activation_mkldnn_op.cc 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
16
#include "paddle/fluid/platform/mkldnn_reuse.h"
17

W
wanghuancoder 已提交
18 19 20 21 22 23 24 25 26
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

27 28 29
namespace paddle {
namespace operators {

30 31 32 33 34 35 36 37
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
38

39 40 41 42 43 44
template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
45 46 47 48 49 50
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor"));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor"));
51 52 53 54 55

    Functor functor;
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
56

57 58 59 60 61 62
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
63
    PADDLE_ENFORCE_EQ(diff_y->layout(), DataLayout::kMKLDNN,
64 65
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input OutGrad tensor"));
A
Adam 已提交
66
    PADDLE_ENFORCE_NE(diff_y->format(), MKLDNNMemoryFormat::undef,
67 68
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input OutGrad tensor"));
69 70 71 72 73 74 75 76

    Functor functor;
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
A
Adam 已提交
77
                     mkldnn::algorithm algorithm) {
78 79 80
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Operator DNNL eletwise_forward must use CPUPlace"));
81
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
82
  const auto& mkldnn_engine = dev_ctx.GetEngine();
83

84 85
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
86

87
  bool is_inplaced = x->IsSharedBufferWith(*y);
88

89
  platform::ActivationMKLDNNHandler<T> handler(algorithm, ctx, mkldnn_engine, ctx.GetPlace(), x);
90

91
  auto src_memory_p = handler.AcquireSrcMemory(x);
92
  auto dst_memory_p = is_inplaced ? src_memory_p : handler.AcquireDstMemory(y);
A
Adam 已提交
93
  auto activation_p = handler.AcquireForwardPrimitive();
94

95
  auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
96 97 98
  activation_p->execute(astream, {{MKLDNN_ARG_FROM, *src_memory_p},
                                  {MKLDNN_ARG_TO, *dst_memory_p}});
  astream.wait();
99

100
  y->set_layout(DataLayout::kMKLDNN);
101
  y->set_format(GetMKLDNNFormat(*dst_memory_p));
102 103
}

104 105
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
A
Adam 已提交
106
                  mkldnn::algorithm algorithm) {
107 108
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

109
  const auto *x = ctx.Input<Tensor>("X");
110 111
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
112

113
  platform::ActivationMKLDNNHandler<T> handler(
114
      algorithm, ctx, dev_ctx, ctx.GetPlace(), x, diff_y, ctx.InputName("X"));
115

116 117 118
  auto src_memory_p = handler.AcquireBackwardSrcMemory(x);
  auto diff_dst_memory_p = handler.AcquireDiffDstMemory(diff_y);
  auto diff_src_memory_p = handler.AcquireDiffSrcMemory(diff_x);
A
Adam 已提交
119 120
  auto activation_backward_p = handler.AcquireBackwardPrimitive();

121
  auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
122 123 124 125 126
  activation_backward_p->execute(astream,
                                 {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                                  {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
  astream.wait();
127

128
  diff_x->set_layout(DataLayout::kMKLDNN);
129
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory_p));
130 131 132 133
}

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
134
  void operator()(const framework::ExecutionContext &ctx) const {
135 136 137 138 139 140
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
141
  void operator()(const framework::ExecutionContext &ctx) const {
142 143 144 145
    eltwise_grad<T>(ctx, algorithm);
  }
};

A
Adam 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
template <typename T>
struct GeluMKLDNNFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
      eltwise_forward<T>(ctx, mkldnn::algorithm::eltwise_gelu_tanh);
    } else {
      eltwise_forward<T>(ctx, mkldnn::algorithm::eltwise_gelu_erf);
    }
  }
};

template <typename T>
struct GeluMKLDNNGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
      eltwise_grad<T>(ctx, mkldnn::algorithm::eltwise_gelu_tanh);
    } else {
      eltwise_grad<T>(ctx, mkldnn::algorithm::eltwise_gelu_erf);
    }
  }
};

170
template <typename T>
T
tensor-tang 已提交
171
using ReluMKLDNNFunctor =
172 173
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

A
Adam 已提交
174 175 176 177
template <typename T>
using Relu6MKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_bounded_relu>;

178 179 180 181
template <typename T>
using SwishMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_swish>;

J
jakpiase 已提交
182 183 184 185
template <typename T>
using HardSwishMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_hardswish>;

186 187 188 189
template <typename T>
using SigmoidMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_logistic>;

190
template <typename T>
T
tensor-tang 已提交
191
using TanhMKLDNNFunctor =
192 193 194
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
195
using SqrtMKLDNNFunctor =
196 197 198
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
199
using AbsMKLDNNFunctor =
200 201 202
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
T
tensor-tang 已提交
203
using ReluMKLDNNGradFunctor =
204 205
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

A
Adam 已提交
206 207 208 209
template <typename T>
using Relu6MKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_bounded_relu>;

210 211 212 213
template <typename T>
using SwishMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_swish>;

J
jakpiase 已提交
214 215 216 217
template <typename T>
using HardSwishMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_hardswish>;

218 219 220 221
template <typename T>
using SigmoidMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_logistic>;

222
template <typename T>
T
tensor-tang 已提交
223
using TanhMKLDNNGradFunctor =
224 225 226
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
227
using SqrtMKLDNNGradFunctor =
228 229 230
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
231
using AbsMKLDNNGradFunctor =
232 233 234 235 236 237 238 239 240 241 242 243 244
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

245 246 247 248 249 250 251 252
#define REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(act_type, functor,             \
                                               grad_functor)                  \
  REGISTER_OP_KERNEL(                                                         \
      act_type, MKLDNN, ::paddle::platform::CPUPlace,                         \
      ops::MKLDNNActivationKernel<ops::functor<float>>,                       \
      ops::MKLDNNActivationKernel<ops::functor<paddle::platform::bfloat16>>); \
  REGISTER_OP_KERNEL(                                                         \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,                  \
253 254 255
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>,              \
      ops::MKLDNNActivationGradKernel<                                        \
          ops::grad_functor<paddle::platform::bfloat16>>);
256

J
jakpiase 已提交
257 258 259 260 261 262 263 264
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)                           \
  __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor);                \
  __macro(relu6, Relu6MKLDNNFunctor, Relu6MKLDNNGradFunctor);             \
  __macro(leaky_relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor);          \
  __macro(swish, SwishMKLDNNFunctor, SwishMKLDNNGradFunctor);             \
  __macro(hardswish, HardSwishMKLDNNFunctor, HardSwishMKLDNNGradFunctor); \
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor);                \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor);                \
T
tensor-tang 已提交
265
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
266 267

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);
268 269
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(gelu, GeluMKLDNNFunctor,
                                       GeluMKLDNNGradFunctor);
270 271
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(sigmoid, SigmoidMKLDNNFunctor,
                                       SigmoidMKLDNNGradFunctor);