SequenceConcatLayer.cpp 5.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Logging.h"
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * A layer for concatenating the first sequence with the second sequence
 * following the first
 * Input: two sequences each containing some instances
 * Output: a concatenated sequence of the two input sequences
 */

class SequenceConcatLayer : public Layer {
protected:
  std::unique_ptr<Weight> biases_;

public:
  explicit SequenceConcatLayer(const LayerConfig& config) : Layer(config) {}

  ~SequenceConcatLayer() {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);
  void backward(const UpdateCallback& callback = nullptr);
};

REGISTER_LAYER(seqconcat, SequenceConcatLayer);

bool SequenceConcatLayer::init(const LayerMap& layerMap,
                               const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  // sequene concatenation layer should have exactly 2 inputs
  CHECK_EQ(2U, inputLayers_.size());

  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
  }

  setNeedSequenceInfo(false);
  return true;
}

void SequenceConcatLayer::forward(PassType passType) {
  Layer::forward(passType);

  size_t dim = getSize();

  const Argument& input1 = getInput(0);
  size_t numSequences1 = input1.getNumSequences();
  auto startPositions1 =
      input1.sequenceStartPositions->getVector(false);

  const Argument& input2 = getInput(1);
  size_t numSequences2 = input2.getNumSequences();
  auto startPositions2 =
      input2.sequenceStartPositions->getVector(false);

  CHECK_EQ(dim, input1.value->getWidth());
  CHECK_EQ(startPositions1->getData()[numSequences1], input1.getBatchSize());
  CHECK_EQ(numSequences1, startPositions1->getSize() - 1);

  CHECK_EQ(dim, input2.value->getWidth());
  CHECK_EQ(startPositions2->getData()[numSequences2], input2.getBatchSize());
  CHECK_EQ(numSequences2, startPositions2->getSize() - 1);

  CHECK_EQ(numSequences1, numSequences2);

  MatrixPtr inputValue1 = getInputValue(0);
  MatrixPtr inputValue2 = getInputValue(1);

  // reset output
  reserveOutput(inputValue1->getHeight() + inputValue2->getHeight(), dim);

  MatrixPtr outputValue = getOutputValue();

  const int* starts1 = startPositions1->getData();
  const int* starts2 = startPositions2->getData();

  {
    AsyncGpuBlock asyncGpuBlock;
    REGISTER_TIMER_INFO("SequenceConcatLayerForward", getName().c_str());

    size_t offset = 0;
    size_t leftNumIns = 0;
    size_t rightNumIns = 0;
    for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
      leftNumIns = starts1[seqId + 1] - starts1[seqId];
      outputValue->subMatrix(offset, leftNumIns)
          ->assign(*(inputValue1->subMatrix(starts1[seqId], leftNumIns)));
      offset += leftNumIns;

      rightNumIns = starts2[seqId + 1] - starts2[seqId];
      outputValue->subMatrix(offset, rightNumIns)
          ->assign(*(inputValue2->subMatrix(starts2[seqId], rightNumIns)));
      offset += rightNumIns;
    }

    // modify the sequenceStartPositions
    ICpuGpuVector::resizeOrCreate(output_.sequenceStartPositions,
                                   numSequences1 + 1, false);

    int* tgtBuf = output_.sequenceStartPositions->getMutableData(false);

    for (size_t seqId = 0; seqId < numSequences1 + 1; ++seqId) {
      tgtBuf[seqId] = starts1[seqId] + starts2[seqId];
    }
  }

  if (biases_.get() != NULL) {
    MatrixPtr outV = getOutputValue();
    outV->addBias(*(biases_->getW()), 1);
  }

  /* activation */
  forwardActivation();
}

void SequenceConcatLayer::backward(const UpdateCallback& callback) {
  /* activation */
  backwardActivation();

  if (biases_ && biases_->getWGrad()) {
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1);

    // Increasing the number of gradient
    biases_->getParameterPtr()->incUpdate(callback);
  }

  MatrixPtr inputGrad1 = getInputGrad(0);
  MatrixPtr inputGrad2 = getInputGrad(1);
  MatrixPtr outputGrad = getOutputGrad();
  auto startPositions1 =
      getInput(0).sequenceStartPositions->getVector(false);
  auto startPositions2 =
      getInput(1).sequenceStartPositions->getVector(false);

  size_t numSequences1 = startPositions1->getSize() - 1;
  size_t numSequences2 = startPositions2->getSize() - 1;

  CHECK_EQ(numSequences1, numSequences2);

  const int* starts1 = startPositions1->getData();
  const int* starts2 = startPositions2->getData();

  {
    AsyncGpuBlock asyncGpuBlock;
    REGISTER_TIMER_INFO("SequenceConcatLayerBackward", getName().c_str());

    size_t offset = 0;
    size_t leftNumIns = 0;
    size_t rightNumIns = 0;
    for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
      leftNumIns = starts1[seqId + 1] - starts1[seqId];
      inputGrad1->subMatrix(starts1[seqId], leftNumIns)
          ->add(*(outputGrad->subMatrix(offset, leftNumIns)));
      offset += leftNumIns;

      rightNumIns = starts2[seqId + 1] - starts2[seqId];
      inputGrad2->subMatrix(starts2[seqId], rightNumIns)
          ->add(*(outputGrad->subMatrix(offset, rightNumIns)));
      offset += rightNumIns;
    }
  }
}

}  // namespace paddle