BatchNormalizationLayer.cpp 9.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Stat.h"
#ifndef PADDLE_ONLY_CPU
#include "hl_batch_transpose.h"
#endif
#include "BatchNormalizationLayer.h"

namespace paddle {

REGISTER_LAYER(batch_norm, BatchNormalizationLayer);

const real BatchNormalizationLayer::EPS = 1E-5;

bool BatchNormalizationLayer::init(const LayerMap& layerMap,
                                   const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  if (!BatchNormBaseLayer::init(layerMap, parameterMap)) return false;

  return true;
}

void BatchNormalizationLayer::calMeanAndStd(const MatrixPtr& mat) {
  int numSamples = mat->getHeight();
  Matrix::resizeOrCreate(tmpMat_, numSamples, channels_, false, useGpu_);
  savedMean_->zeroMem();
  savedMean_->accumulateColSum(*mat);
  savedMean_->mulScalar(1.0 / numSamples);  // E[x]

  tmpMat_->assign(*mat);
  tmpMat_->square();
  savedInvVar_->zeroMem();
  savedInvVar_->accumulateColSum(*tmpMat_);
  savedInvVar_->mulScalar(1.0 / numSamples);  // E[x^2]
  savedInvVar_->addSquare(*savedMean_, -1.0);      // E[x^2] - E^2[x]

  // Variance may be small negative value
  // because of the subtraction operation.
  // Here using clipping.
  savedInvVar_->downClip(real(0.0));

  calMovingMeanAndVar();

  savedInvVar_->subScalar(-EPS);
  savedInvVar_->sqrt(*savedInvVar_);
}

void BatchNormalizationLayer::calMovingMeanAndVar() {
  // calculating and saving moving mean and variance
  MatrixPtr movingMean = movingMean_->getW();
  MatrixPtr movingVar = movingVar_->getW();

  if (!useGpu_ && FLAGS_trainer_count > 1) {
    auto mvMean = std::dynamic_pointer_cast<SharedCpuMatrix>(movingMean);
    auto mvVar = std::dynamic_pointer_cast<SharedCpuMatrix>(movingVar);
    CHECK(mvMean && mvVar);

    mvMean->add(*savedMean_, movingAvgFraction_, 1.0 - movingAvgFraction_);
    mvVar->add(*savedInvVar_, movingAvgFraction_, 1.0 - movingAvgFraction_);
  } else {
    // movingMean =  movingMean * movingAvgFraction_
    //            + savedMean_ * (1 - movingAvgFraction_)
    movingMean->add(*savedMean_, movingAvgFraction_, 1.0 - movingAvgFraction_);
    // movingVar =  movingVar * movingAvgFraction_
    //           + savedInvVar_ * (1 - movingAvgFraction_)
    movingVar->add(*savedInvVar_, movingAvgFraction_, 1.0 - movingAvgFraction_);
  }
}

void BatchNormalizationLayer::setMeanAndStd() {
  savedMean_->copyFrom(*(movingMean_->getW()));
  savedInvVar_->copyFrom(*(movingVar_->getW()));
  savedInvVar_->downClip(real(0.0));

  savedInvVar_->subScalar(-EPS);
  savedInvVar_->sqrt(*savedInvVar_);
}

void BatchNormalizationLayer::expandMat(const MatrixPtr& in, MatrixPtr& out) {
  CHECK_EQ(in->getWidth(), static_cast<size_t>(channels_ * imgPixels_));
  CHECK_EQ(out->getWidth(), static_cast<size_t>(channels_));
  CHECK(!in->isTransposed());
  CHECK(!out->isTransposed());
  if (imgPixels_ == 1) {
    out->assign(*in);
    return;
  }
  size_t batchSize = in->getHeight();
  CHECK_EQ(out->getHeight(), batchSize * imgPixels_);
  if (useGpu_) {
#ifdef PADDLE_ONLY_CPU
    LOG(FATAL) << "paddle is compiled only for cpu";
#else
    batchTranspose(in->getData(), out->getData(), imgPixels_,
                   channels_, batchSize);
#endif
  } else {
    for (size_t i = 0; i < batchSize; i++) {
      const MatrixPtr inTmp =
          Matrix::create(in->getData() + i * imgPixels_ * channels_, channels_,
                         imgPixels_, false, useGpu_);
      MatrixPtr outTmp =
          Matrix::create(out->getData() + i * imgPixels_ * channels_,
                         imgPixels_, channels_, false, useGpu_);
      inTmp->transpose(outTmp, false);
    }
  }
}

void BatchNormalizationLayer::shrinkMat(const MatrixPtr& in, MatrixPtr& out) {
  CHECK_EQ(in->getWidth(), static_cast<size_t>(channels_));
  CHECK_EQ(out->getWidth(), static_cast<size_t>(channels_ * imgPixels_));
  size_t batchSize = out->getHeight();
  CHECK(!in->isTransposed());
  CHECK(!out->isTransposed());
  if (imgPixels_ == 1) {
    out->assign(*in);
    return;
  }
  CHECK_EQ(in->getHeight(), static_cast<size_t>(batchSize * imgPixels_));
  if (useGpu_) {
#ifdef PADDLE_ONLY_CPU
    LOG(FATAL) << "paddle is compiled only for cpu";
#else
    batchTranspose(in->getData(), out->getData(), channels_,
                   imgPixels_, batchSize);
#endif
  } else {
    for (size_t i = 0; i < batchSize; i++) {
      const MatrixPtr inTmp =
          Matrix::create(in->getData() + i * channels_ * imgPixels_, imgPixels_,
                         channels_, false, useGpu_);
      MatrixPtr outTmp =
          Matrix::create(out->getData() + i * imgPixels_ * channels_, channels_,
                         imgPixels_, useGpu_);
      inTmp->transpose(outTmp, false);
    }
  }
}


void BatchNormalizationLayer::forward(PassType passType) {
  Layer::forward(passType);

  int batchSize = getInputValue(0)->getHeight();
  calFeatureMapSize();
  resetOutput(batchSize, getInputValue(0)->getWidth());

  // for testing in training peroid.
  useGlobalStats_ = (passType == PASS_TEST);
  if (passType == PASS_TEST && config_.has_use_global_stats()) {
    useGlobalStats_ = config_.use_global_stats();
  }

  Matrix::resizeOrCreate(expandedIn_, batchSize * imgPixels_, channels_, false,
                         useGpu_);
  Matrix::resizeOrCreate(normIn_, batchSize * imgPixels_, channels_, false,
                         useGpu_);
  Matrix::resizeOrCreate(expandedOut_, batchSize * imgPixels_, channels_, false,
                         useGpu_);
  expandMat(getInputValue(0), expandedIn_);

  if (useGlobalStats_) {
    if (firstTest_) {
      setMeanAndStd();
      firstTest_ = false;
    }
  } else {
    calMeanAndStd(expandedIn_);
    firstTest_ = true;
  }

  normIn_->assign(*expandedIn_);
  normIn_->addBias(*savedMean_, -1);  // subtract mean.
  normIn_->divRowVector(*savedInvVar_);  // divide std.

  expandedOut_->assign(*normIn_);
  expandedOut_->mulRowVector(*weight_->getW());  // multiple gamma.
  if (biases_) {
    expandedOut_->addBias(*(biases_->getW()), 1);  // add beta.
  }
  MatrixPtr out = getOutputValue();
  shrinkMat(expandedOut_, out);

  /* activation */ {
    REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
    forwardActivation();
  }
}

void BatchNormalizationLayer::backward(const UpdateCallback& callback) {
  /* Do derivation */ {
    REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
    backwardActivation();
  }
  int batchSize = getInputValue(0)->getHeight();

  Matrix::resizeOrCreate(meanGrad_, 1, channels_, false, useGpu_);
  Matrix::resizeOrCreate(stdGrad_, 1, channels_, false, useGpu_);

  Matrix::resizeOrCreate(expandedInGrad_, batchSize * imgPixels_, channels_,
                         false, useGpu_);
  Matrix::resizeOrCreate(inGrad_, batchSize, imgPixels_ * channels_, false,
                         useGpu_);
  Matrix::resizeOrCreate(normInGrad_, batchSize * imgPixels_, channels_, false,
                         useGpu_);
  Matrix::resizeOrCreate(expandedOutGrad_, batchSize * imgPixels_, channels_,
                         false, useGpu_);
  Matrix::resizeOrCreate(tmpMat_, batchSize * imgPixels_, channels_, false,
                         useGpu_);
  Matrix::resizeOrCreate(tmpGrad_, batchSize * imgPixels_, channels_, false,
                         useGpu_);

  expandMat(getOutputGrad(), expandedOutGrad_);

  // compute derivatives.
  if (biases_ && biases_->getWGrad()) {
    REGISTER_TIMER_INFO("BpBiasTimer", getName().c_str());
    biases_->getWGrad()->collectBias(*expandedOutGrad_, 1);
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }
  if (weight_->getWGrad()) {
    tmpMat_->dotMul(*expandedOutGrad_, *normIn_);
    weight_->getWGrad()->collectBias(*tmpMat_, 1);
  }

  // compute input gradients.
  normInGrad_->assign(*expandedOutGrad_);
  normInGrad_->mulRowVector(*(weight_->getW()));  // multiple gamma.
  // normInGrad * (x - \mu)/ \sqrt(\delta^2)
  tmpMat_->dotMul(*normInGrad_, *normIn_);
  stdGrad_->zeroMem();
  stdGrad_->collectBias(*tmpMat_, -1.0 / (batchSize * imgPixels_));
  tmpGrad_->assign(*normIn_);
  tmpGrad_->mulRowVector(*stdGrad_);

  meanGrad_->zeroMem();
  meanGrad_->collectBias(*normInGrad_, -1.0 / (batchSize * imgPixels_));

  expandedInGrad_->zeroMem();
  expandedInGrad_->add(*normInGrad_, *tmpGrad_);
  expandedInGrad_->addRowVector(*meanGrad_);
  expandedInGrad_->divRowVector(*savedInvVar_);

  shrinkMat(expandedInGrad_, inGrad_);
  if (getInputGrad(0)) {
    getInputGrad(0)->add(*getInputGrad(0), *inGrad_);
  }
  {
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    weight_->getParameterPtr()->incUpdate(callback);
  }
}

}  // namespace paddle