api_custom_impl.cc 16.0 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "paddle/phi/api/lib/api_gen_utils.h"
18 19 20
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/utils/storage.h"
21
#include "paddle/phi/core/compat/convert_utils.h"
22 23
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
24
#include "paddle/phi/infermeta/backward.h"
25 26 27
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
28
#include "paddle/phi/infermeta/unary.h"
29

30
#include "glog/logging.h"
31

32 33 34
namespace paddle {
namespace experimental {

35
////////////////// Forward api impls //////////////////////
36

37
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
38
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
39 40
  kernel_key_set.backend_set =
      kernel_key_set.backend_set | BackendSet(phi::TransToPhiBackend(place));
41
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
42
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
43 44
      "copy", kernel_key);

45 46
  VLOG(6) << "copy API kernel key: " << kernel_key;
  VLOG(6) << "copy API kernel: " << kernel;
47 48 49

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

50
  auto dense_x = TensorToDenseTensor(x);
51 52

  Tensor out;
53 54 55 56 57 58 59 60 61
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::UnchangedInferMeta(*dense_x, &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    phi::Place,
                                    bool,
                                    phi::DenseTensor*);
62

63
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
64
  (*kernel_fn)(*dev_ctx, *dense_x, place, blocking, kernel_out);
65 66 67 68

  return out;
}

69
std::vector<Tensor> split_impl(const Tensor& x,
70
                               const IntArray& num_or_sections,
71 72
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
73
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
74 75 76 77

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
78

79
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
      "split", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
  if (num_or_sections.GetData().size() == 1) {
    out_number = num_or_sections.GetData()[0];
  } else {
    out_number = num_or_sections.GetData().size();
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
99
  std::vector<phi::MetaTensor> meta_outs;
100 101 102
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
103 104
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
105
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
106 107
  }

108
  phi::SplitInferMeta(
109
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
110 111

  using kernel_signature = void (*)(const platform::DeviceContext&,
112
                                    const phi::DenseTensor&,
113
                                    const phi::IntArray&,
114 115
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
116 117 118
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
119
               phi::IntArray(num_or_sections),
120
               phi::Scalar(axis),
C
chentianyu03 已提交
121 122 123 124
               dense_outs);

  return out;
}
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
////////////////// Backward(grad) api impls //////////////////////

// TODO(chenweihang):  the original sum grad op can support higher-level
// differentiation,
// but if we use this impl, it will not support. We need to be able to reuse
// the autograd API here, which is not yet implemented
// TODO(chenweihang): we should support call generated api in custom api impl
std::vector<Tensor> add_n_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "add_n_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "add_n_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(0), {});

  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::Scalar&,
                                    float,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  for (auto* dense_x_grad_t : dense_x_grad) {
    phi::MetaTensor meta_out(dense_x_grad_t);
    phi::UnchangedInferMeta(MakeMetaTensor(*dense_out_grad), &meta_out);
    (*kernel_fn)(
        *dev_ctx, *dense_out_grad, phi::Scalar(1.0), 0.0, true, dense_x_grad_t);
  }

  return x_grad;
}

H
hong 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(x);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "batch_norm", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "batch_norm API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "batch_norm API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_x = PrepareData(x, kernel.InputAt(0), {});
  auto input_scale = PrepareData(scale, kernel.InputAt(1), {});
  auto input_bias = PrepareData(bias, kernel.InputAt(2), {});
  auto input_mean = PrepareData(mean, kernel.InputAt(3), {});
  auto input_variance = PrepareData(variance, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &std::get<0>(api_output));
  std::get<1>(api_output).set_impl(mean.impl());
  std::get<2>(api_output).set_impl(variance.impl());
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &std::get<1>(api_output));
  auto kernel_out_2 = SetKernelOutput(kernel_backend, &std::get<2>(api_output));
  auto kernel_out_3 = SetKernelOutput(kernel_backend, &std::get<3>(api_output));
  auto kernel_out_4 = SetKernelOutput(kernel_backend, &std::get<4>(api_output));
  auto kernel_out_5 = SetKernelOutput(kernel_backend, &std::get<5>(api_output));
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::BatchNormInferMeta(MakeMetaTensor(*input_x),
                          MakeMetaTensor(*input_scale),
                          MakeMetaTensor(*input_bias),
                          MakeMetaTensor(*input_mean),
                          MakeMetaTensor(*input_variance),
                          momentum,
                          epsilon,
                          data_layout,
                          is_test,
                          use_global_stats,
                          trainable_statistics,
                          fuse_with_relu,
                          &meta_out_0,
                          &meta_out_1,
                          &meta_out_2,
                          &meta_out_3,
                          &meta_out_4,
                          &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    float,
                                    float,
                                    const std::string&,
                                    bool,
                                    bool,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  {
    (*kernel_fn)(*dev_ctx,
                 *input_x,
                 *input_scale,
                 *input_bias,
                 *input_mean,
                 *input_variance,
                 momentum,
                 epsilon,
                 data_layout,
                 is_test,
                 use_global_stats,
                 trainable_statistics,
                 fuse_with_relu,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  }

  return api_output;
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
std::vector<Tensor> concat_grad_impl(const std::vector<Tensor>& x,
                                     const Tensor& out_grad,
                                     const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "concat_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "concat_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "concat_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  // std::unique_ptr<std::vector<phi::DenseTensor>>
  auto dense_x = PrepareData(x, kernel.InputAt(0), {});
  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(1), {});

  // Calculate the number of out tensors
  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);

  std::vector<phi::MetaTensor> meta_x;
  meta_x.reserve(x.size());
  std::vector<phi::MetaTensor*> meta_x_ptrs;
  meta_x_ptrs.reserve(x.size());
  for (const auto& t : *dense_x) {
    meta_x.push_back(t);
    meta_x_ptrs.push_back(&meta_x.back());
  }

  std::vector<phi::MetaTensor> meta_x_grad;
  meta_x_grad.reserve(x.size());
  std::vector<phi::MetaTensor*> meta_x_grad_ptrs;
  meta_x_grad_ptrs.reserve(x.size());
  for (size_t i = 0; i < out_number; ++i) {
    meta_x_grad.push_back(*dense_x_grad[i]);
    meta_x_grad_ptrs.push_back(&meta_x_grad.back());
  }

  phi::UnchangedMultiInferMeta(meta_x_ptrs, meta_x_grad_ptrs);

  std::vector<const phi::DenseTensor*> dense_x_ptr;
  dense_x_ptr.reserve(x.size());
  for (const auto& t : *dense_x) {
    dense_x_ptr.push_back(&t);
  }

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    const phi::DenseTensor&,
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(
      *dev_ctx, dense_x_ptr, *dense_out_grad, phi::Scalar(axis), dense_x_grad);

  return x_grad;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
std::vector<Tensor> stack_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad,
                                    int axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "stack_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "stack_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "stack_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(0), {});

  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);
  std::vector<phi::MetaTensor> meta_x_grad;
  meta_x_grad.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_x_grad_ptrs;
  meta_x_grad_ptrs.reserve(out_number);
  for (size_t i = 0; i < out_number; ++i) {
    meta_x_grad.push_back(dense_x_grad[i]);
    meta_x_grad_ptrs.push_back(&meta_x_grad.back());
  }

  phi::StackGradInferMeta(
      MakeMetaTensor(*dense_out_grad), axis, meta_x_grad_ptrs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    int axis,
                                    std::vector<phi::DenseTensor*>);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, axis, dense_x_grad);

  return x_grad;
}

413 414
}  // namespace experimental
}  // namespace paddle