operation.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/ir/operation.h"
#include "paddle/ir/utils.h"

namespace ir {
// Allocate the required memory based on the size and number of inputs, outputs,
// and operators, and construct it in the order of: OpOutlineResult,
// OpInlineResult, Operation, Operand.
Operation *Operation::create(const std::vector<ir::OpResult> &inputs,
                             const std::vector<ir::Type> &output_types,
                             ir::DictionaryAttribute attribute) {
  // 1. Calculate the required memory size for OpResults + Operation +
  // OpOperands.
  uint32_t num_results = output_types.size();
  uint32_t num_operands = inputs.size();
  uint32_t max_inline_result_num =
      detail::OpResultImpl::GetMaxInlineResultIndex() + 1;
  size_t result_mem_size =
      num_results > max_inline_result_num
          ? sizeof(detail::OpOutlineResultImpl) *
                    (num_results - max_inline_result_num) +
                sizeof(detail::OpInlineResultImpl) * max_inline_result_num
          : sizeof(detail::OpInlineResultImpl) * num_results;
  size_t operand_mem_size = sizeof(detail::OpOperandImpl) * num_operands;
  size_t op_mem_size = sizeof(Operation);
  size_t base_size = result_mem_size + op_mem_size + operand_mem_size;
  // 2. Malloc memory.
  char *base_ptr = reinterpret_cast<char *>(aligned_malloc(base_size, 8));
  // 3.1. Construct OpResults.
  for (size_t idx = num_results; idx > 0; idx--) {
    if (idx > max_inline_result_num) {
      new (base_ptr)
          detail::OpOutlineResultImpl(output_types[idx - 1], idx - 1);
      base_ptr += sizeof(detail::OpOutlineResultImpl);
    } else {
      new (base_ptr) detail::OpInlineResultImpl(output_types[idx - 1], idx - 1);
      base_ptr += sizeof(detail::OpInlineResultImpl);
    }
  }
  // 3.2. Construct Operation.
  Operation *op =
      new (base_ptr) Operation(num_results, num_operands, attribute);
  base_ptr += sizeof(Operation);
  // 3.3. Construct OpOperands.
  if ((reinterpret_cast<uintptr_t>(base_ptr) & 0x7) != 0) {
    throw("The address of OpOperandImpl must be divisible by 8.");
  }
  for (size_t idx = 0; idx < num_operands; idx++) {
    new (base_ptr) detail::OpOperandImpl(inputs[idx].impl_, op);
    base_ptr += sizeof(detail::OpOperandImpl);
  }
  VLOG(4) << "Construct an Operation: " << op->print();
  return op;
}

// Call destructors for OpResults, Operation, and OpOperands in sequence, and
// finally free memory.
void Operation::destroy() {
  // 1. Get aligned_ptr by result_num.
  uint32_t max_inline_result_num =
      detail::OpResultImpl::GetMaxInlineResultIndex() + 1;
  size_t result_mem_size =
      num_results_ > max_inline_result_num
          ? sizeof(detail::OpOutlineResultImpl) *
                    (num_results_ - max_inline_result_num) +
                sizeof(detail::OpInlineResultImpl) * max_inline_result_num
          : sizeof(detail::OpInlineResultImpl) * num_results_;
  char *aligned_ptr = reinterpret_cast<char *>(this) - result_mem_size;
  // 2.1. Deconstruct OpResult.
  char *base_ptr = aligned_ptr;
  for (size_t idx = num_results_; idx > 0; idx--) {
    if (!reinterpret_cast<detail::OpResultImpl *>(base_ptr)->use_empty()) {
      throw("Cannot destroy a value that still has uses!");
    }
    if (idx > max_inline_result_num) {
      reinterpret_cast<detail::OpOutlineResultImpl *>(base_ptr)
          ->~OpOutlineResultImpl();
      base_ptr += sizeof(detail::OpOutlineResultImpl);
    } else {
      reinterpret_cast<detail::OpInlineResultImpl *>(base_ptr)
          ->~OpInlineResultImpl();
      base_ptr += sizeof(detail::OpInlineResultImpl);
    }
  }
  // 2.2. Deconstruct Operation.
  if (reinterpret_cast<uintptr_t>(base_ptr) !=
      reinterpret_cast<uintptr_t>(this)) {
    throw("Operation address error");
  }
  reinterpret_cast<Operation *>(base_ptr)->~Operation();
  base_ptr += sizeof(Operation);
  // 2.3. Deconstruct OpOpOerand.
  for (size_t idx = 0; idx < num_operands_; idx++) {
    reinterpret_cast<detail::OpOperandImpl *>(base_ptr)->~OpOperandImpl();
    base_ptr += sizeof(detail::OpOperandImpl);
  }
  // 3. Free memory.
  VLOG(4) << "Destroy an Operation: {ptr = "
          << reinterpret_cast<void *>(aligned_ptr)
          << ", size = " << result_mem_size << "}";
  aligned_free(reinterpret_cast<void *>(aligned_ptr));
}

Operation::Operation(uint32_t num_results,
                     uint32_t num_operands,
                     ir::DictionaryAttribute attribute) {
  if (!attribute) {
    throw("unexpected null attribute dictionary");
  }
  num_results_ = num_results;
  num_operands_ = num_operands;
  attribute_ = attribute;
}

ir::OpResult Operation::GetResultByIndex(uint32_t index) {
  if (index >= num_results_) {
    throw("index exceeds OP output range.");
  }
  uint32_t max_inline_idx = detail::OpResultImpl::GetMaxInlineResultIndex();
  char *ptr = nullptr;
  if (index > max_inline_idx) {
    ptr = reinterpret_cast<char *>(this) -
          (max_inline_idx + 1) * sizeof(detail::OpInlineResultImpl) -
          (index - max_inline_idx) * sizeof(detail::OpOutlineResultImpl);
  } else {
    ptr = reinterpret_cast<char *>(this) -
          (index + 1) * sizeof(detail::OpInlineResultImpl);
  }
  if (index > max_inline_idx) {
    detail::OpOutlineResultImpl *result_impl_ptr =
        reinterpret_cast<detail::OpOutlineResultImpl *>(ptr);
    return ir::OpResult(result_impl_ptr);
  } else {
    detail::OpInlineResultImpl *result_impl_ptr =
        reinterpret_cast<detail::OpInlineResultImpl *>(ptr);
    return ir::OpResult(result_impl_ptr);
  }
}

std::string Operation::print() {
  std::stringstream result;
  result << "{ " << num_results_ << " outputs, " << num_operands_
         << " inputs } : ";
  result << "[ ";
  for (size_t idx = num_results_; idx > 0; idx--) {
    result << GetResultByIndex(idx - 1).impl_ << ", ";
  }
  result << "] = ";
  result << this << "( ";
  for (size_t idx = 0; idx < num_operands_; idx++) {
    result << reinterpret_cast<void *>(reinterpret_cast<char *>(this) +
                                       sizeof(Operation) +
                                       idx * sizeof(detail::OpOperandImpl))
           << ", ";
  }
  result << ")";
  return result.str();
}

}  // namespace ir