pool_op.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int outputSize_pool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24 25 26 27 28 29 30
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
31 32 33 34
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Out(Output) of Pooling should not be null.");
C
chengduoZH 已提交
35

36
    auto in_X = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
37
    auto out = ctx.Output<Tensor>("Out");
38 39
    int global_pooling = Attr<int>("globalPooling");
    std::string pooling_type = Attr<std::string>("poolingType");
40 41 42 43
    std::vector<int> ksize = Attr<std::vector<int>>("ksize");
    std::vector<int> strides = Attr<std::vector<int>>("strides");
    std::vector<int> paddings = Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
44 45
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type should be 'max' or 'avg'");
C
chengduoZH 已提交
46 47
    PADDLE_ENFORCE(in_X->dims().size() == 4 || in_X->dims().size() == 5,
                   "Pooling intput should be 4-D or 5-D");
48 49

    if (global_pooling == 1) {
C
chengduoZH 已提交
50 51 52
      ksize.resize(static_cast<size_t>(in_X->dims().size()) - 2);
      for (size_t i = 0; i < ksize.size(); ++i)
        ksize[i] = static_cast<int>(in_X->dims()[i + 2]);
53
    }
C
chengduoZH 已提交
54

55
    if (ksize.size() == 2) {
C
chengduoZH 已提交
56 57 58 59
      PADDLE_ENFORCE_EQ(strides.size(), 2,
                        "Pool2DOp strides size should be 2 elements.");
      PADDLE_ENFORCE_EQ(paddings.size(), 2,
                        "Pool2DOp paddings size should be 2 elements");
60
    } else {
C
chengduoZH 已提交
61 62 63 64
      PADDLE_ENFORCE_EQ(strides.size(), 3,
                        "Pool3DOp strides should be 3 elements.");
      PADDLE_ENFORCE_EQ(paddings.size(), 3,
                        "Pool3DOp paddings should be 3 elements.");
65
    }
66
    std::vector<int64_t> output_shape({in_X->dims()[0], in_X->dims()[1]});
67
    for (size_t i = 0; i < ksize.size(); ++i) {
68
      output_shape.push_back(outputSize_pool(in_X->dims()[i + 2], ksize[i],
C
chengduoZH 已提交
69
                                             paddings[i], strides[i]));
70
    }
71
    out->Resize(framework::make_ddim(output_shape));
72 73 74 75 76 77 78 79 80
  }
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
81
    auto in = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
82
    auto d_in = ctx.Output<Tensor>(framework::GradVarName("X"));
83 84 85 86
    if (d_in) d_in->Resize(in->dims());
  }
};

C
chengduoZH 已提交
87
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
88
 public:
C
chengduoZH 已提交
89
  Pool2dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
90 91
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
92
        "X",
93
        "The input tensor of pooling operator. "
C
chengduoZH 已提交
94 95
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
96
    AddOutput("Out",
97
              "The output tensor of pooling operator."
C
chengduoZH 已提交
98
              "The format of output tensor is also NCHW.");
99

100
    AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
101
                         "poolingType of pooling operator."
C
chengduoZH 已提交
102
                         "str constant equal to 'max' or 'avg'");
103
    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
104 105 106 107 108 109 110
        "ksize", "pooling size(height, width) of pooling operator.");
    AddAttr<int>(
        "globalPooling",
        "whether to use the globalPooling."
        "int constant equal to 0 or 1"
        "default 0"
        "If globalPooling = 1, ksize is ignored and need not be specified.")
111
        .SetDefault(0);
C
chengduoZH 已提交
112 113 114 115 116 117 118 119 120
    AddAttr<std::vector<int>>("strides",
                              "strides(height, width) of pooling operator."
                              "default {1,1}")
        .SetDefault({1, 1});
    AddAttr<std::vector<int>>("paddings",
                              "paddings(height, width) of pooling operator."
                              "default {0,0}")
        .SetDefault({0, 0});

121
    AddComment(R"DOC(
C
chengduoZH 已提交
122
The pooling2d operation calculates the output based on
123
the input, poolingType and ksize, strides, paddings parameters.
124 125 126
)DOC");
  }
};
C
chengduoZH 已提交
127
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
128
 public:
C
chengduoZH 已提交
129
  Pool3dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
130
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
131 132 133 134 135 136
    AddInput("X",
             "The input tensor of pooling operator. "
             "The format of input tensor is NCDHW. Where N is batch size, C is "
             "the "
             "number of channels, D, H and W is the depth, height and width of "
             "image.");
137
    AddOutput("Out",
138
              "The output tensor of pooling operator."
C
chengduoZH 已提交
139
              "The format of output tensor is also NCDHW.");
140

141
    AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
142
                         "poolingType of pooling operator."
C
chengduoZH 已提交
143
                         "str constant equal to 'max' or 'avg'");
144
    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
145 146 147 148 149 150 151
        "ksize", "pooling size(depth, height, width) of pooling operator.");
    AddAttr<int>(
        "globalPooling",
        "whether to use the globalPooling."
        "int constant equal to 0 or 1"
        "default 0"
        "If globalPooling = 1, ksize is ignored and need not be specified.")
152
        .SetDefault(0);
C
chengduoZH 已提交
153 154 155 156 157 158 159 160 161 162
    AddAttr<std::vector<int>>(
        "strides",
        "strides(depth, height, width) of pooling operator."
        "default {1,1,1}")
        .SetDefault({1, 1, 1});
    AddAttr<std::vector<int>>(
        "paddings",
        "paddings(depth, height, width) of pooling operator."
        "default {0,0,0}")
        .SetDefault({0, 0, 0});
163
    AddComment(R"DOC(
C
chengduoZH 已提交
164
The pooling3d operation calculates the output based on
165
the input, poolingType and ksize, strides, paddings parameters.
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool2d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool3d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool3d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>);