conv.py 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Layers used for QAT.
"""
from paddle.nn import Layer
from paddle.nn import functional as F

20
from ..format import ConvertibleQuantedLayer
21

22 23

class QuantedConv2D(ConvertibleQuantedLayer):
24
    """
25
    The computational logic of QuantizedConv2D is the same as Conv2D.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    The only difference is that its inputs are all fake quantized.
    """

    def __init__(self, layer: Layer, q_config):
        super(QuantedConv2D, self).__init__()

        # For Conv2D
        self._groups = getattr(layer, '_groups')
        self._stride = getattr(layer, '_stride')
        self._padding = getattr(layer, '_padding')
        self._padding_mode = getattr(layer, '_padding_mode')
        if self._padding_mode != 'zeros':
            self._reversed_padding_repeated_twice = getattr(
                layer, '_reversed_padding_repeated_twice'
            )
        self._dilation = getattr(layer, '_dilation')
        self._data_format = getattr(layer, '_data_format')
        self.weight = getattr(layer, 'weight')
        self.bias = getattr(layer, 'bias')

        self.weight_quanter = None
        self.activation_quanter = None
        if q_config.weight is not None:
            self.weight_quanter = q_config.weight._instance(layer)
        if q_config.activation is not None:
            self.activation_quanter = q_config.activation._instance(layer)

    def forward(self, input):
        quant_input = input
        quant_weight = self.weight
        if self.activation_quanter is not None:
            quant_input = self.activation_quanter(input)
        if self.weight_quanter is not None:
            quant_weight = self.weight_quanter(self.weight)
        return self._conv_forward(quant_input, quant_weight)

    def _conv_forward(self, inputs, weights):
        if self._padding_mode != 'zeros':
            inputs = F.pad(
                inputs,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )
            self._padding = 0

        return F.conv2d(
            inputs,
            weights,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
82 83 84 85 86 87

    def weights_to_quanters(self):
        return [('weight', 'weight_quanter')]

    def activation_quanters(self):
        return ['activation_quanter']