dist_saver.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import errno
import logging
17 18 19 20
import os
import pickle
import re

21 22
import numpy as np

23
import paddle
24
from paddle.framework import core
25

R
Roc 已提交
26
from ..utils.log_utils import get_logger
27 28
from .process_group import _g_process_group_map
from .utils import get_dist_attr
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57


def check_filename(re_exp, filename):
    if re.search(re_exp, filename):
        return True
    else:
        return False


def _process_path(path):
    filename = os.path.basename(path)
    if filename == "":
        raise ValueError(
            "path should be of 'dirname/filename' format, but received filename is empty string"
        )
    try:
        dirname = os.path.dirname(path)
        os.makedirs(dirname)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise
    return dirname, filename


class DistributedSaver:
    def __init__(self):
        self._logger = get_logger(logging.INFO)

    def save(self, path, serial_program, dist_main_program, dist_context):
58 59
        def _save_state(program, path, mode="param"):
            state = {
60
                k: np.array(v) for k, v in program.state_dict(mode).items()
61 62 63 64
            }
            with open(path, "wb") as f:
                pickle.dump(state, f)

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        dirname, filename = _process_path(path)

        rank_id = paddle.distributed.get_rank()
        # save serial program when rank id is 0
        if rank_id == 0:
            self._save_rank_mapping(dirname)
            serial_model_filename = filename + "_serial.pdmodel"
            serial_model_path = os.path.join(dirname, serial_model_filename)
            with open(serial_model_path, "wb") as f:
                f.write(serial_program.desc.serialize_to_string())

        # save distributed main program
        dist_model_filename = filename + "_dist" + str(rank_id) + ".pdmodel"
        dist_model_path = os.path.join(dirname, dist_model_filename)
        with open(dist_model_path, "wb") as f:
            f.write(dist_main_program.desc.serialize_to_string())

        # save distributed attribute
        dist_attr_filename = filename + "_dist" + str(rank_id) + ".pdattr"
        dist_attr_path = os.path.join(dirname, dist_attr_filename)
        dist_attrs = get_dist_attr(dist_main_program, dist_context)
        with open(dist_attr_path, "wb") as f:
            pickle.dump(dist_attrs, f)

89 90 91 92 93 94 95 96 97 98
        # save distributed params
        dist_param_filename = filename + "_dist" + str(rank_id) + ".pdparams"
        dist_param_path = os.path.join(dirname, dist_param_filename)
        _save_state(dist_main_program, dist_param_path)

        # save distributed opt states
        dist_opt_filename = filename + "_dist" + str(rank_id) + ".pdopt"
        dist_opt_path = os.path.join(dirname, dist_opt_filename)
        _save_state(dist_main_program, dist_opt_path, "opt")

99 100
        # TODO:save cluster.json

101
    def load(self, path, load_optimizer=True):
102
        # TODO: if `program` is None, load `path.pdmodel`.
103 104 105
        def _load_file(filename, dirname, suffix="pdparams"):
            file_list = []
            for file in os.listdir(dirname):
106 107 108
                if check_filename(
                    '{}(.*)_dist(.*).{}'.format(filename, suffix), file
                ):
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                    file_list.append(os.path.join(dirname, file))
            file_list.sort()
            return file_list

        def _load_state(filename, dirname, suffix="pdparams"):
            file_list = _load_file(filename, dirname, suffix)
            state_dict = {}
            for file in file_list:
                with open(file, 'rb') as f:
                    state_dict_info = pickle.load(f, encoding='latin1')
                for name, value in state_dict_info.items():
                    if name in state_dict:
                        state_dict[name].append(np.array(value))
                    else:
                        state_dict[name] = [np.array(value)]
            self._logger.info("Load param file: {}".format(file_list))
            return state_dict

127 128 129 130 131 132
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "path should be of 'dirname/filename' format, but received filename is empty string"
            )
        dirname = os.path.dirname(path)
133 134 135

        # load path.pdparam and path.pdopt
        param_state_dict = _load_state(filename, dirname)
136 137 138
        opt_state_dict = (
            _load_state(filename, dirname, "pdopt") if load_optimizer else {}
        )
139
        state_dict = dict(param_state_dict, **opt_state_dict)
140 141

        # load path.pdattr
142
        dist_attr_file_list = _load_file(filename, dirname, "pdattr")
143
        self._logger.info(
144 145
            "Load distributed attribute file: {}".format(dist_attr_file_list)
        )
146
        dist_attr = {}
147 148
        for dist_attr_file in dist_attr_file_list:
            with open(dist_attr_file, 'rb') as f:
149 150 151 152 153 154
                dist_attr_info = pickle.load(f, encoding='latin1')
            for name, attr in dist_attr_info.items():
                if name not in dist_attr:
                    dist_attr[name] = attr

        return state_dict, dist_attr
155 156 157 158 159 160 161 162 163 164 165 166 167 168

    def save_inference_model(self, path, feed_vars, fetch_vars, exe, **kwargs):

        dirname, filename = _process_path(path)

        # save distributed inference program
        rank_id = paddle.distributed.get_rank()
        if rank_id == 0:
            self._save_rank_mapping(dirname)
        op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()
        op_role_forward = int(core.op_proto_and_checker_maker.OpRole.Forward)

        dist_main_prog = kwargs.get('program', None)
        if not dist_main_prog:
169
            dist_main_prog = paddle.static.default_main_program()
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        global_block = dist_main_prog.global_block()

        ops = global_block.ops
        feed_vars_names = list(map(lambda x: x.name, feed_vars))
        fetch_vars_names = list(map(lambda x: x.name, fetch_vars))

        last_idx = -1
        for idx, op in enumerate(ops):
            if op.attr(op_role_key) != op_role_forward:
                continue
            if op.type == "read" or op.type == "feed" or op.type == 'recv_v2':
                feed_vars_names += op.output("Out")
            if op.type == "send_v2":
                fetch_vars_names += op.input("X")
                last_idx = max(idx, last_idx)
            for out_name in op.output_arg_names:
                if out_name in fetch_vars_names:
                    last_idx = max(idx, last_idx)

        used_inputs = []
        used_outputs = []
        for idx, op in enumerate(ops):
            if idx > last_idx:
                break
            used_inputs += op.input_arg_names
            used_outputs += op.output_arg_names

197 198 199 200 201 202
        for idx, var_name in enumerate(feed_vars_names):
            if var_name not in used_inputs:
                feed_vars_names.pop(idx)
        for idx, var_name in enumerate(fetch_vars_names):
            if var_name not in used_outputs:
                fetch_vars_names.pop(idx)
203

204 205 206
        dist_feed_vars = list(
            reversed([global_block.vars[name] for name in feed_vars_names])
        )
207
        dist_fetch_vars = [global_block.vars[name] for name in fetch_vars_names]
208 209 210

        dist_filename = filename + "_dist" + str(rank_id)
        dist_path = os.path.join(dirname, dist_filename)
211 212 213 214 215 216 217
        paddle.static.save_inference_model(
            dist_path,
            dist_feed_vars,
            dist_fetch_vars,
            exe,
            program=dist_main_prog,
        )
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

    def _save_rank_mapping(self, dirname):
        path = os.path.join(dirname, 'rank_mapping.csv')
        f = open(path, 'w')
        f.write('[ring_id -> ranks]\n')
        for process_group in _g_process_group_map.values():
            ring_id = process_group._group_id
            ranks = [str(rank) for rank in process_group._ranks]
            id_to_rank = str(ring_id) + "," + ",".join(ranks) + '\n'
            f.write(id_to_rank)
            id_to_rank = ""
        f.write('[rank -> ring_ids]\n')
        rank_to_id_dict = {}
        for process_group in _g_process_group_map.values():
            ring_id = process_group._group_id
            for rank in process_group._ranks:
                if rank in rank_to_id_dict:
                    rank_to_id_dict[rank].append(str(ring_id))
                else:
                    rank_to_id_dict[rank] = [str(ring_id)]
        rank_to_id = ""
        for item, val in rank_to_id_dict.items():
            rank_to_id += str(item) + ","
            rank_to_id += ",".join(val) + "\n"
            f.write(rank_to_id)
            rank_to_id = ""
        f.close()