utils.py 67.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import ast
18
import astor
19 20
import atexit
import copy
21
import collections
22
from paddle.utils import gast
23 24 25 26
import inspect
import os
import six
import tempfile
27
import textwrap
28
import numpy as np
29

30
import paddle
31
from paddle.fluid import unique_name
32
from paddle.fluid.data_feeder import convert_dtype
33
from paddle.fluid import core
34 35
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers import assign
36

37 38 39 40 41
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.fluid.dygraph.dygraph_to_static'
42 43 44
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
ARGS_NAME = '__args'
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

class BaseNodeVisitor(gast.NodeVisitor):
    """
    Implement customized NodeVisitor inherited from gast.NodeVisitor. 
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
# imp is deprecated in python3
from importlib.machinery import SourceFileLoader

dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

# FullArgSpec is valid from Python3. Defined a Namedtuple to
# to make it available in Python2.
FullArgSpec = collections.namedtuple('FullArgSpec', [
    'args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults',
    'annotations'
])


96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

     Note: 
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
           size. For example, it is useful to set changeable batch size as "None" 
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in six.moves.range(len(shape)):
        if shape[i] is None:
            shape[i] = -1

131 132 133 134 135 136 137 138
    return helper.create_global_variable(name=name,
                                         shape=shape,
                                         dtype=dtype,
                                         type=core.VarDesc.VarType.LOD_TENSOR,
                                         stop_gradient=True,
                                         lod_level=lod_level,
                                         is_data=True,
                                         need_check_feed=False)
139

140

141 142 143 144 145 146 147 148
def create_undefined_var_like(variable):
    """ create a undefined var with the same shape and dtype like varaible.
    """
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
    var = data_layer_not_check(unique_name.generate("undefined_var"),
                               variable.shape, variable.dtype)
    assign(RETURN_NO_VALUE_MAGIC_NUM, var)
    return var
149

150

151 152 153 154 155 156
def create_undefined_variable():
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
    var = data_layer_not_check(unique_name.generate("undefined_var"), [1],
                               "float64")
    assign(RETURN_NO_VALUE_MAGIC_NUM, var)
    return var
157 158


159 160 161 162 163 164 165 166 167 168
class UndefinedVar:

    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
            "local variable '{}' should be created before using it.")


169 170 171 172 173 174
class Dygraph2StaticException(Exception):

    def __init__(self, message):
        super().__init__(message)


175 176 177 178 179 180 181
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


182 183 184 185 186
def getfullargspec(target):
    if hasattr(inspect, "getfullargspec"):
        return inspect.getfullargspec(target)
    else:
        argspec = inspect.getargspec(target)
187 188 189 190 191 192 193
        return FullArgSpec(args=argspec.args,
                           varargs=argspec.varargs,
                           varkw=argspec.keywords,
                           defaults=argspec.defaults,
                           kwonlyargs=[],
                           kwonlydefaults=None,
                           annotations={})
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215


def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
    fullargspec = getfullargspec(function)
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
        default_kwarg_names = arg_names[-len(default_values):]
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
216 217 218 219 220 221 222 223 224
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
    fullargspec = getfullargspec(function)
    varargs = fullargspec.varargs
    return varargs


225 226 227 228 229 230 231 232
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

233
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
234
    """
235
    if isinstance(x, (tuple, list, set)):
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

253

254 255 256 257 258 259 260
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
261 262 263 264 265 266 267 268

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
269
    try:
270 271 272 273 274
        # TODO(liym27):
        #  Consider a better to import modules like:
        #  source_file = inspect.getfile(dyfunc)
        #  import_statements = ImportVisitor(source_file).transform()
        #  import_str = "".join(import_statements)
275
        import paddle
L
liym27 已提交
276
        import paddle.fluid as fluid
277
        import paddle.fluid.dygraph as dygraph
L
liym27 已提交
278
        import paddle.fluid.layers as layers
279
        import paddle.jit.dy2static as _jst
280

281
        from paddle.fluid.dygraph import to_variable
282 283
        from paddle import to_tensor

284 285
        return eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, module_prefix))
286
    except Exception:
287 288 289 290
        return False


def is_dygraph_api(node):
291

292
    # Note: A api in module dygraph_to_static is not a real dygraph api.
293
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
294 295
        return False

296 297
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
298
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
299 300 301


def is_paddle_api(node):
302 303 304 305 306 307
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


def is_paddle_func(func):
    m = inspect.getmodule(func)
    return m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
308 309 310 311 312 313 314 315 316 317 318 319 320 321


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
        import numpy as np
        module_result = eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, "numpy"))
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
        if not module_result:
            return func_str.startswith("numpy.") or func_str.startswith("np.")
322
    except Exception:
323 324 325
        return False


L
liym27 已提交
326 327 328
def is_control_flow_to_transform(node,
                                 static_analysis_visitor=None,
                                 var_name_to_type=None):
329
    """
L
liym27 已提交
330 331
    Determines whether the node is a PaddlePaddle control flow statement which needs to
    be transformed into a static graph control flow statement.
332 333 334
    """
    assert isinstance(node, gast.AST), \
        "The type of input node must be gast.AST, but received %s." % type(node)
335 336 337
    visitor = IsControlFlowVisitor(node,
                                   static_analysis_visitor,
                                   node_var_type_map=var_name_to_type)
L
liym27 已提交
338 339
    need_to_transform = visitor.transform()
    return need_to_transform
340 341


342 343
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
344
    func_src = astor.to_source(gast.gast_to_ast(node.func))
345 346 347 348 349 350 351 352 353 354 355 356
    import paddle.fluid as fluid
    full_args = eval("inspect.getargspec({})".format(func_src))
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
357 358 359
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
            "to static graph at present.".format(dygraph_class))
360 361 362 363 364 365 366 367 368 369


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
370 371
            gast.keyword(arg="num_flatten_dims",
                         value=gast.Constant(value=-1, kind=None)))
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

390 391 392 393 394 395 396 397 398
    node.func = gast.Attribute(attr=static_api,
                               ctx=gast.Load(),
                               value=gast.Attribute(attr='layers',
                                                    ctx=gast.Load(),
                                                    value=gast.Name(
                                                        ctx=gast.Load(),
                                                        id='fluid',
                                                        annotation=None,
                                                        type_comment=None)))
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

419
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
420 421 422
    import paddle.fluid as fluid
    if method_name == "__init__" or eval(
            "issubclass({}, fluid.dygraph.Layer)".format(class_src)):
423 424
        full_args = eval("inspect.getargspec({}.{})".format(
            class_src, method_name))
425 426 427 428 429 430 431 432 433 434 435
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
436 437 438


def create_api_shape_node(tensor_shape_node):
439 440 441 442 443
    assert isinstance(tensor_shape_node,
                      (gast.Name, gast.Attribute, gast.Subscript))

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
444
            func=gast.parse('paddle.shape').body[0].value,
445 446 447
            args=[tensor_shape_node],
            keywords=[])
        return api_shape_node
448 449 450

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
451
            func=gast.parse('paddle.shape').body[0].value,
452 453 454 455 456 457 458 459
            args=[tensor_shape_node.value],
            keywords=[])
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
460 461


462
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
463 464
    return gast.parse('%s = paddle.full(%s, "%s", %s)' %
                      (name, str(shape), str(value), dtype))
465 466 467 468 469 470 471 472 473


def get_attribute_full_name(node):
    assert isinstance(
        node,
        gast.Attribute), "Input non-Attribute node to get attribute full name"
    return astor.to_source(gast.gast_to_ast(node)).strip()


474
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
475
    """
476 477 478 479 480 481 482
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
483 484 485 486
    """
    if isinstance(name_ids, six.string_types):
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
487 488 489
        raise TypeError(
            'name_ids must be list or tuple or set, but received %s' %
            type(type(name_ids)))
490 491 492 493 494 495 496 497 498 499

    def create_node_for_name(name):
        if '.' not in name:
            return gast.Name(id=name,
                             ctx=ctx,
                             annotation=None,
                             type_comment=None)
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
500
    if len(gast_names) == 1 and not gen_tuple_if_single:
501 502 503 504 505 506 507 508 509 510 511 512 513
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
514 515
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
516 517
    else:
        nodes.append(gast.Return(value=None))
518 519 520 521 522 523
    func_def_node = gast.FunctionDef(name=name,
                                     args=input_args,
                                     body=nodes,
                                     decorator_list=[],
                                     returns=None,
                                     type_comment=None)
524 525 526
    return func_def_node


527 528 529 530 531 532 533 534
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


535 536 537 538 539 540 541 542 543 544
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


class RenameTransformer(gast.NodeTransformer):
545

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    def __init__(self, node):
        assert isinstance(
            node, gast.AST), "RenameTransformer only accepts gast.AST as input"
        self.root = node
        self.old_name = ""
        self.new_name = ""

    def rename(self, old_name, new_name):
        self.old_name = old_name
        self.new_name = new_name
        self.visit(self.root)

    def visit_Name(self, node):
        self.generic_visit(node)
        if node.id == self.old_name:
            node.id = self.new_name
        return node

    def visit_Attribute(self, node):
        self.generic_visit(node)
        attr_full_name = get_attribute_full_name(node)
        if attr_full_name == self.old_name:
            new_name_node = gast.parse(self.new_name).body[0].value
            return new_name_node
        return node


573
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
574 575
    """
    Transform modified AST of decorated function into python callable object.
576 577
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
578
    """
579

580
    def remove_if_exit(filepath):
581 582 583
        if os.path.exists(filepath):
            os.remove(filepath)

584
    source = ast_to_source_code(ast_root)
585
    source = _inject_import_statements() + source
586

587 588 589 590
    f = tempfile.NamedTemporaryFile(mode='w',
                                    suffix='.py',
                                    delete=False,
                                    encoding='utf-8')
591 592 593 594 595
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

    if delete_on_exit:
596 597
        atexit.register(lambda: remove_if_exit(f.name))
        atexit.register(lambda: remove_if_exit(f.name[:-3] + ".pyc"))
598

T
tianshuo78520a 已提交
599
    module = SourceFileLoader(module_name, f.name).load_module()
600
    func_name = dyfunc.__name__
W
WeiXin 已提交
601 602 603 604 605 606 607 608
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
609 610 611
        raise ValueError(
            'Function: %s doesn\'t exist in the Module transformed from AST.' %
            func_name)
612 613 614 615 616 617 618 619
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


620 621
def _inject_import_statements():
    import_statements = [
622
        "import paddle", "from paddle import Tensor",
623 624
        "import paddle.fluid as fluid", "import paddle.jit.dy2static as _jst",
        "from typing import *", "import numpy as np"
625 626 627 628
    ]
    return '\n'.join(import_statements) + '\n'


629 630 631 632 633
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
634

635
    for k, v in six.iteritems(src_globals):
636 637 638
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
639 640


641 642 643 644 645 646
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
647 648
            "The type of 'function' should be a function or method, but received {}."
            .format(type(function).__name__))
649
    source_code_list, _ = inspect.getsourcelines(function)
650
    # Replace comments with blank lines so that error messages are not misplaced
651
    source_code_list = [
652 653
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
654 655
    ]
    source_code = ''.join(source_code_list)
656 657 658 659 660 661
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


662 663
def ast_to_source_code(ast_node):
    """
664
    Transforms ast node into source code.
665 666 667 668 669 670 671
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
            "Type of ast_root should be gast.AST or ast.AST, but received %s." %
            type(ast_node))
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
672 673 674 675 676 677

    # Do not wrap lines even if they are too long
    def pretty_source(source):
        return ''.join(source)

    source_code = astor.to_source(ast_node, pretty_source=pretty_source)
678
    return source_code
L
liym27 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
    is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
                                        gast.For, gast.If, gast.While))
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
702 703 704
            if (isinstance(child, gast.Constant)
                    and child.value is None) or (isinstance(child, gast.Name)
                                                 and child.id == 'None'):
L
liym27 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
722
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
723
        6. calls `range` function in `for` statement and the argument of range is Tensor.
724 725
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

    def __init__(self,
                 ast_node,
                 static_analysis_visitor=None,
                 node_var_type_map=None):
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
            ast_node)
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
        self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
761 762 763 764 765 766 767 768
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
769 770 771 772 773 774 775 776 777
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
778 779 780 781 782 783 784 785 786 787 788 789 790 791
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
                if node.iter.func.id == "range" or node.iter.func.id == "enumerate":
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
792 793
            else:
                return
794 795 796
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
797
        else:
L
liym27 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
836
            self.visit(child)
L
liym27 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
            if name_id and isinstance(name_id, six.string_types):
                var_type = self.node_var_type_map.get(name_id, None)
886
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
887 888
                    return True
        # if not found, look up the node_to_wrapper_map by node.
889
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
890
        if wrapper_node is not None:
891
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
892 893 894 895 896 897
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
898 899 900 901


class NameNodeReplaceTransformer(gast.NodeTransformer):
    """
902
    This class replaces specified gast.Name node by replace_node.
903 904 905 906
    """

    def __init__(self, root_node, target_name, replace_node):
        assert isinstance(target_name, str)
907 908 909 910 911 912 913 914 915 916 917 918 919 920

        # NOTE(liym27):
        # Use gast.Name to replace gast.Name, otherwise, errors may occur.
        #
        # For examples:
        # If using a gast.Subscript to replace gast.Name, and the original gast.Name
        # is in the arguments of FunctionDef, an exception will be raised.
        #
        # ```
        # def func(x[i])) # x[i] can not be a argument
        #    # ...
        # ```

        assert isinstance(replace_node, gast.Name)
921 922 923 924 925 926 927 928 929 930
        self.target_name = target_name
        self.replace_node = replace_node

        self.visit(root_node)

    def visit_Name(self, node):
        if node.id == self.target_name:
            return self.replace_node
        return node

931 932 933 934 935 936 937 938 939 940
    def visit_Nonlocal(self, node):
        names = node.names

        def replace(s):
            if s == self.target_name: return self.replace_node.id
            return s

        node.names = list(map(replace, names))
        return node

941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
class ForLoopTuplePreTransformer(gast.NodeTransformer):
    """
    ForNodeVisitor parses 3 type statements (Here var is VarBase(Tensor) or python variable):
        1). for x in range(var[*]|var.numpy()[*])
        2). for x in var|var.numpy()
        3). for i, x in enumerate(var|var.numpy())

        We chose these 3 types because they are easier (x can be variable name iterating in var).
        However, users can write tuples in Python for loop, such as
        1). for var1, var2 in var|var.numpy()
        2). for t in enumerate(var|var.numpy())
        2). for i, (var1, var2, va3) in enumerate(var|var.numpy())

        To handle these case, this method will do the rewrite tuple pre-process:
        1). Non-enumerate case: for var1, var2 in var|var.numpy() will be re-written as:
          for FOR_ITER_TUPLE_PREFIX_x in var | var.numpy():
            var1 = FOR_ITER_TUPLE_PREFIX_x[0]
            var2 = FOR_ITER_TUPLE_PREFIX_x[1]
        2). Enumerate out tuple case: for t in enumerate(var|var.numpy) will be rewritten as:
          for FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x in enumerate(var|var.numpy):
            t = (FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x)
        3). Enumerate inner tuple case: for i, (var1, (var2, va3)) in enumerate(var|var.numpy()) will
        be re-written as:
          for i, FOR_ITER_TUPLE_PREFIX_x in var | var.numpy():
            var1 = FOR_ITER_TUPLE_PREFIX_x[0]
            var2 = FOR_ITER_TUPLE_PREFIX_x[1][0]
            var3 = FOR_ITER_TUPLE_PREFIX_x[1][1]
    """

    def __init__(self, wrapper_root):
        self.wrapper_root = wrapper_root
        self.root = wrapper_root.node

    def transform(self):
        self.visit(self.root)

    def visit_For(self, node):
        if self.is_for_enumerate_iter(node):
            if isinstance(node.target, (gast.Name, gast.Attribute)):
                # Out tuple case
                out_tuple_name = ast_to_source_code(node.target).strip()
                tuple_iter_name = unique_name.generate(
                    FOR_ITER_TUPLE_INDEX_PREFIX)
                tuple_var_name = unique_name.generate(FOR_ITER_TUPLE_PREFIX)
986 987 988 989 990 991 992 993 994 995 996
                node.target = gast.Tuple(elts=[
                    gast.Name(id=tuple_iter_name,
                              ctx=gast.Store(),
                              annotation=None,
                              type_comment=None),
                    gast.Name(id=tuple_var_name,
                              ctx=gast.Store(),
                              annotation=None,
                              type_comment=None)
                ],
                                         ctx=gast.Store())
997 998
                node.body.insert(
                    0,
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
                    gast.Assign(targets=[
                        gast.Name(id=out_tuple_name,
                                  ctx=gast.Store(),
                                  annotation=None,
                                  type_comment=None)
                    ],
                                value=gast.Tuple(elts=[
                                    gast.Name(id=tuple_iter_name,
                                              ctx=gast.Load(),
                                              annotation=None,
                                              type_comment=None),
                                    gast.Name(id=tuple_var_name,
                                              ctx=gast.Load(),
                                              annotation=None,
                                              type_comment=None)
                                ],
                                                 ctx=gast.Load())))
            elif isinstance(node.target, (gast.List, gast.Tuple)) and len(
                    node.target.elts) >= 2 and isinstance(
1018 1019 1020 1021
                        node.target.elts[1], (gast.List, gast.Tuple)):
                # Inner tuple case
                inner_tuple_name = unique_name.generate(FOR_ITER_TUPLE_PREFIX)
                origin_inner_tuple_node = node.target.elts[1]
1022 1023 1024 1025
                node.target.elts[1] = gast.Name(id=inner_tuple_name,
                                                ctx=gast.Store(),
                                                annotation=None,
                                                type_comment=None)
1026 1027 1028 1029 1030 1031 1032
                node.body[0:0] = self.tuple_to_stmts(origin_inner_tuple_node,
                                                     inner_tuple_name)
        elif self.is_for_iter(node) and isinstance(node.target,
                                                   (gast.List, gast.Tuple)):
            # Non-enumrate case:
            tuple_name = unique_name.generate(FOR_ITER_TUPLE_PREFIX)
            origin_tuple_node = node.target
1033 1034 1035 1036
            node.target = gast.Name(id=tuple_name,
                                    ctx=gast.Store(),
                                    annotation=None,
                                    type_comment=None)
1037 1038 1039 1040 1041
            node.body[0:0] = self.tuple_to_stmts(origin_tuple_node, tuple_name)
        return node

    def tuple_to_stmts(self, node, tuple_name, idx=[]):
        if not isinstance(node, (gast.Tuple, gast.List)):
1042
            value_node_str = tuple_name
1043
            for i in idx:
1044 1045 1046 1047 1048 1049 1050
                value_node_str = value_node_str + "[{}]".format(i)

            node_str = ast_to_source_code(node).strip()
            assign_node_str = "{} = {}".format(node_str, value_node_str)
            assign_node = gast.parse(assign_node_str).body[0]
            return [assign_node]

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
        # isinstance(node, (gast.Tuple, gast.List))
        ret = []
        for i, element in enumerate(node.elts):
            ret += self.tuple_to_stmts(node.elts[i], tuple_name, idx + [i])
        return ret

    def is_for_iter(self, for_node):
        assert isinstance(for_node,
                          gast.For), "Input node is not gast.For node."
        if isinstance(for_node.iter, (gast.Name, gast.Attribute)):
            return True
        elif isinstance(for_node.iter, gast.Call) and isinstance(
                for_node.iter.func,
                gast.Attribute) and for_node.iter.func.attr == 'numpy':
            return True
        elif isinstance(for_node.iter, gast.Subscript):
            return True
        else:
            return False

    def is_for_enumerate_iter(self, for_node):
        assert isinstance(for_node,
                          gast.For), "Input node is not gast.For node."
        return isinstance(for_node.iter, gast.Call) and isinstance(
            for_node.iter.func,
            gast.Name) and for_node.iter.func.id == "enumerate"


1079
class ForNodeVisitor(object):
1080
    """
1081
    This class parses python for statement, get transformed 3 statement components of for node
1082 1083 1084 1085 1086 1087 1088 1089
    three key statements:
        1). init_stmts: list[node], prepare nodes of for loop, may not only one
        2). cond_stmt: node, condition node to judge whether continue loop
        3). body_stmts: list[node], updated loop body, sometimes we should change
            the original statement in body, not just append new statement

    In this process, the semantics of for does not change.

1090
    Now only can parse 3 type statements (Here var is VarBase(Tensor) or python variable):
1091 1092 1093
        1). for x in range(var[*]|var.numpy()[*])
        2). for x in var|var.numpy()
        3). for i, x enumerate(var|var.numpy())
1094 1095 1096 1097 1098
    """

    def __init__(self, for_node):
        assert isinstance(
            for_node, gast.For
1099
        ), "Input node for the initialization of ForNodeVisitor is not gast.For node."
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        # 1. original for node
        self.node = for_node

        # 2. gast.For node main parts
        self.target = for_node.target
        # NOTE: type may be Node or list[Node]
        self.iter_args = for_node.iter if self.is_for_iter(
        ) else for_node.iter.args
        self.body = for_node.body

        # 3. key shared node or names
        # - x:
        #   - for x in range(***)
1113 1114
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
1115 1116 1117
        self.iter_var_name = self._get_iter_var_name()

        # - created index var to slice Variable: __for_loop_var_index_0
1118 1119
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
1120 1121
        self.iter_idx_name = unique_name.generate(FOR_ITER_INDEX_PREFIX)

1122
        # - created shape var to build loop condition: __for_loop_var_len_0
1123 1124 1125
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
        #   - for x in var
1126
        self.iter_var_len_name = unique_name.generate(FOR_ITER_VAR_LEN_PREFIX)
1127 1128 1129
        # - created zip to list var : __for_loop_iter_zip_0
        self.iter_zip_to_list_name = unique_name.generate(
            FOR_ITER_ZIP_TO_LIST_PREFIX)
1130

1131 1132 1133
        # - var.numpy()/var
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
1134 1135 1136
        self.iter_node = self._get_iter_node()

        # - enumeate i:
1137
        #   - for i, x enumerate(var|var.numpy())
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
        self.enum_idx_name = self._get_enum_idx_name()

        # - range/enumerate args length
        self.args_length = None

    def parse(self):
        self._args_check()
        if self.is_for_range_iter():
            return self._parse_for_range_stmts()
        elif self.is_for_iter():
            return self._parse_for_stmts()
        elif self.is_for_enumerate_iter():
            return self._parse_for_enumerate_stmts()
        else:
1152
            return None
1153 1154

    def is_for_range_iter(self):
1155 1156 1157
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "range"
1158 1159

    def is_for_iter(self):
1160 1161
        if isinstance(self.node.iter,
                      (gast.Name, gast.Attribute, gast.List, gast.Tuple)):
1162 1163 1164 1165 1166
            return True
        elif isinstance(self.node.iter, gast.Call) and isinstance(
                self.node.iter.func,
                gast.Attribute) and self.node.iter.func.attr == 'numpy':
            return True
1167 1168
        elif isinstance(self.node.iter, gast.Subscript):
            return True
1169 1170
        else:
            return False
1171 1172

    def is_for_enumerate_iter(self):
1173 1174 1175
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "enumerate"
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

    def _args_check(self):
        if self.is_for_range_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 3, "range() function takes 1 to 3 arguments"
        elif self.is_for_enumerate_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 2, "enumerate() function takes 1 to 2 arguments"
        else:
            self.args_length = None

    def _parse_for_range_stmts(self):
        init_stmts = []
        init_stmts.append(self._build_index_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_stmts(self):
        init_stmts = []
1202
        init_stmts.extend(self._build_iter_node())
1203
        init_stmts.append(self._build_index_init_node())
1204
        init_stmts.append(self._build_var_len_assign_node())
1205 1206 1207 1208 1209 1210

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
1211 1212 1213 1214 1215

        # NOTE(liym27): Here add a gast.Assign, and the target of it is gast.Name.
        # In NameNodeReplaceTransformer, using gast.Name to replace gast.Name is safe.
        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
1216 1217
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
1218
                                       target_node)
1219 1220 1221 1222 1223 1224
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_enumerate_stmts(self):
        init_stmts = []
1225
        init_stmts.extend(self._build_iter_node())
1226
        init_stmts.append(self._build_index_init_node())
1227
        init_stmts.append(self._build_var_len_assign_node())
1228 1229 1230 1231 1232 1233 1234
        init_stmts.append(self._build_enum_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
1235 1236 1237

        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
1238 1239
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
1240 1241
                                       target_node)

1242 1243 1244 1245 1246 1247 1248 1249
        body_stmts.append(self._build_index_increase_node(step_node))
        body_stmts.append(self._build_enum_increase_node())

        return init_stmts, cond_stmt, body_stmts

    def _build_index_init_node(self):
        if self.is_for_range_iter():
            if self.args_length == 1:
1250
                index_init_value_str = '0'
1251
            else:
1252 1253
                index_init_value_str = ast_to_source_code(
                    self.iter_args[0]).strip()
1254 1255

            index_init_var_name = self.iter_var_name
1256
        else:
1257 1258 1259 1260 1261 1262 1263 1264
            index_init_value_str = '0'
            index_init_var_name = self.iter_idx_name

        index_init_node_source_str = "{target} = {value}".format(
            target=index_init_var_name, value=index_init_value_str)

        index_init_node = gast.parse(index_init_node_source_str).body[0]

1265 1266
        return index_init_node

1267 1268 1269 1270 1271
    def _build_var_len_assign_node(self):
        # get the length of iterable variable
        if isinstance(self.iter_node, gast.Call) and isinstance(
                self.iter_node.func,
                gast.Attribute) and self.iter_node.func.attr == 'numpy':
1272 1273
            iter_var_name = ast_to_source_code(
                self.iter_node.func.value).strip()
1274
        else:
1275 1276
            iter_var_name = ast_to_source_code(self.iter_node).strip()

1277
        convert_len_node_source_str = '{} = _jst.Len({})'.format(
1278 1279 1280 1281 1282
            self.iter_var_len_name, iter_var_name)

        convert_len_node = gast.parse(convert_len_node_source_str).body[0]

        return convert_len_node
1283

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    def _build_iter_node(self):
        """
        Process special cases for iter_node inclue:
          - Case 1 (for zip):
            
            - for i, val in enumerate(zip(x, y))  # original code:
            
            - __for_loop_iter_zip_0 = list(zip(x, y))
            - for i, val in enumerate(__for_loop_iter_zip_0)
        """
        new_nodes = []
        if isinstance(self.iter_node, gast.Call) and isinstance(
                self.iter_node.func, gast.Name):
            if self.iter_node.func.id == 'zip':
                iter_var_name = ast_to_source_code(self.iter_node).strip()
                zip_to_list_str = "{target} = list({value})".format(
                    target=self.iter_zip_to_list_name, value=iter_var_name)
                zip_to_list_node = gast.parse(zip_to_list_str).body[0]
                new_nodes.append(zip_to_list_node)

1304 1305 1306 1307
                self.iter_node = gast.Name(id=self.iter_zip_to_list_name,
                                           ctx=gast.Load(),
                                           annotation=None,
                                           type_comment=None)
1308 1309 1310

        return new_nodes

1311 1312
    def _build_enum_init_node(self):
        if self.is_for_enumerate_iter() and self.args_length != 1:
1313 1314 1315 1316 1317 1318 1319
            init_value_str = ast_to_source_code(self.iter_args[1]).strip()
        else:
            init_value_str = '0'

        enum_init_node_source_str = "{} = {}".format(self.enum_idx_name,
                                                     init_value_str)
        enum_init_node = gast.parse(enum_init_node_source_str).body[0]
1320 1321 1322 1323 1324 1325 1326
        return enum_init_node

    def _build_compare_node(self):
        if self.is_for_range_iter():
            compare_node = self.iter_args[
                0] if self.args_length == 1 else self.iter_args[1]
        else:
1327 1328 1329 1330
            compare_node = gast.Name(id=self.iter_var_len_name,
                                     ctx=gast.Load(),
                                     annotation=None,
                                     type_comment=None)
1331 1332 1333 1334 1335
        return compare_node

    def _build_step_node(self):
        if self.is_for_range_iter():
            step_node = self.iter_args[
1336 1337
                2] if self.args_length == 3 else gast.Constant(value=1,
                                                               kind=None)
1338 1339 1340 1341 1342
        else:
            step_node = gast.Constant(value=1, kind=None)
        return step_node

    def _build_cond_stmt(self, step_node, compare_node):
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        if not isinstance(step_node, (gast.Constant, gast.UnaryOp)):
            raise NotImplementedError(
                "Dynamic-to-Static only supports the step value is a constant or negative constant in 'for-range' statements, "
                "such as '2', '-3'. But received: '{}'. Please fix code to be compatible with Dynamic-to-Static."
                .format(ast_to_source_code(step_node).strip()))

        if isinstance(step_node, gast.UnaryOp) or step_node.value < 0:
            # eg:
            # range(max, min, -2)
            # ->
            # i > min
1354 1355 1356 1357 1358 1359 1360 1361
            return gast.Compare(left=gast.Name(
                id=self.iter_var_name
                if self.is_for_range_iter() else self.iter_idx_name,
                ctx=gast.Load(),
                annotation=None,
                type_comment=None),
                                ops=[gast.Gt()],
                                comparators=[compare_node])
1362 1363 1364 1365 1366
        else:
            # eg:
            # range(min, max, 2)
            # ->
            # i < max
1367
            return gast.Compare(left=gast.Name(
1368 1369
                id=self.iter_var_name
                if self.is_for_range_iter() else self.iter_idx_name,
1370
                ctx=gast.Load(),
1371 1372
                annotation=None,
                type_comment=None),
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
                                ops=[gast.Lt()],
                                comparators=[compare_node])

    def _build_index_increase_node(self, step_node):
        return gast.AugAssign(target=gast.Name(
            id=self.iter_var_name
            if self.is_for_range_iter() else self.iter_idx_name,
            ctx=gast.Store(),
            annotation=None,
            type_comment=None),
                              op=gast.Add(),
                              value=step_node)
1385

1386
    def _build_assign_var_slice_node(self):
1387 1388 1389
        var_slice_str = "{}[{}]".format(
            ast_to_source_code(self.iter_node).strip(), self.iter_idx_name)
        var_slice_node = gast.parse(var_slice_str).body[0].value
1390 1391 1392 1393
        new_iter_var_name = unique_name.generate(FOR_ITER_VAR_NAME_PREFIX)
        target_node, assign_node = create_assign_node(new_iter_var_name,
                                                      var_slice_node)
        return target_node, assign_node
1394 1395

    def _build_enum_increase_node(self):
1396 1397 1398 1399 1400 1401
        return gast.AugAssign(target=gast.Name(id=self.enum_idx_name,
                                               ctx=gast.Store(),
                                               annotation=None,
                                               type_comment=None),
                              op=gast.Add(),
                              value=gast.Constant(value=1, kind=None))
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

    def _get_iter_var_name(self):
        if self.is_for_range_iter():
            return self.target.id
        elif self.is_for_iter():
            return self.target.id
        elif self.is_for_enumerate_iter():
            return self.target.elts[1].id
        return None

    def _get_iter_node(self):
        if self.is_for_iter():
            return self.iter_args
        elif self.is_for_enumerate_iter():
            return self.iter_args[0]
        return None

    def _get_enum_idx_name(self):
        if self.is_for_enumerate_iter():
            return self.target.elts[0].id
        return None
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504


class SplitAssignTransformer(gast.NodeTransformer):
    """
    This class transforms sequence assignments and multi-target assignments to normal assignments.
    """

    def __init__(self, ast_node):
        assert isinstance(ast_node, gast.AST)
        self.ast_root = ast_node

    def transform(self):
        self.visit(self.ast_root)

    def visit_Assign(self, node):
        target_nodes = node.targets
        if len(target_nodes) == 1:
            node = self._parse_sequence_assign(node)
        else:
            node = self._parse_multi_target_assign(node)
        return node

    def _parse_sequence_assign(self, node):
        """
        a, b = c, d
        ->
        a = c
        b = d
        """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        if not isinstance(target_nodes[0], (gast.List, gast.Tuple)):
            return node
        if not isinstance(value_node, (gast.List, gast.Tuple)):
            return node

        targets = node.targets[0].elts
        values = node.value.elts
        if len(targets) != len(values):
            return node

        new_nodes = []
        for target, value in zip(targets, values):
            assign_node = gast.Assign(targets=[target], value=value)
            new_nodes.append(assign_node)

        return new_nodes

    def _parse_multi_target_assign(self, node):
        """
         Example 1:
         a = b = c
         ->
         b = c
         a = b

         Example 2:
         a, b = c, d = x
         ->
         c,d = x
         a = c
         b = d
         """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        new_nodes = []
        for target in reversed(target_nodes):
            assign_node = gast.Assign(targets=[target], value=value_node)
            # NOTE: Because assign_node can be sequence assign statement like `a,b = c,d`,
            # it's necessary to visit this new assign_node
            parsed_node = self.visit_Assign(assign_node)
            if not isinstance(parsed_node, list):
                parsed_node = [parsed_node]

            new_nodes.extend(parsed_node)
            value_node = target

        return new_nodes
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520


# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
    while (_is_wrapped(unwrapped_f)):
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
1521 1522


C
Chen Weihang 已提交
1523
def input_specs_compatible(src_input_specs, desired_input_specs):
1524 1525 1526 1527
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
1528 1529 1530 1531
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
1532 1533
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
1534 1535
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
1536
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
1537 1538 1539 1540
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
1541 1542 1543 1544 1545 1546 1547 1548
        for (src_spec, desired_spec) in zip(src_input_specs,
                                            desired_input_specs):
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
                    desired_spec, paddle.static.InputSpec):
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
1549 1550
                    return False

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
1578 1579

    return True
1580

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

def slice_is_num(slice_node):
    # A slice_node.slice can be a:
    # (1) ast.Index, which is a simple number such as [1], [-2]
    # (2) ast.Slice, which is represented by bounds such as [2:-1]
    # (3) ast.Tuple, which includes the above two cases such as [2:-1, 1]
    # If slice node is case (1), return True, Otherwise, return False.
    #
    # NOTE: In (1) case, when gast>=0.4.0, gast.Index is not used, which is replaced
    # other gast node such as gast.Constant, gast.Name, gast.UnaryOp and so on.
    # Considering the compatibility of gast, here use ast note to check whether the
    # node is a num. For more details, please visit https://github.com/serge-sans-paille/gast

    assert isinstance(slice_node, gast.Subscript)
    slice_node_str = ast_to_source_code(slice_node).strip()
    ast_node = ast.parse(slice_node_str).body[0].value

    if isinstance(ast_node.slice, (ast.Tuple, ast.Slice)):
        return False

    if isinstance(ast_node.slice, ast.Index):
        return True

    return False
1626 1627


1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
class NameScope:

    def __init__(self):
        """ 
            A NameScope is a object which manager all the variable names. 
            only FunctionDef and Controlflow node will have a namescope property.

            type can be "function" and "controlflow"

            we don't analyze the read only variable because they don't affect the analysis.
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
        self.created = set(
        )  # useful for control flow compatibility. may be remove later

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
        """ vars existing in current scope. 
            they must not contain qualified names.
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

    def control_flow_vars(self):
        valid_names = self.w_vars
        tmp = self.father.global_vars & valid_names,
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

    def global_vars(self):
        return self.globals

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
    """ analyze the liveness of a function.

        every variables stored in this scope will be collected,
        in addition with global/nonlocal information.

        1. global variable is stored in node.var_globals.
        2. nonlocal variable is stored in node.var_nonlocals.
        3. arguments is stored in node.var_args.

        For example:

        def func(*args, **kargs):
            a = 12
            global i,j
            nonlocal x,y
            print(a)
            i = k
            for m in range(10):
                q = 12
        
        After this visitor we have: 
        # node is the FunctionDef node with name: "func"
        node.pd_scope = NameScope(
            globals = ['i', 'j'],
            nonlocals = ['x', 'y'],
            args = ['args', 'kargs'], 
            wr_vars = ['a', 'i', 'q', 'm']
        )
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
        setattr(node, "pd_scope", NameScope())

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
            setattr(node, "pd_scope", NameScope())
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
        if len(self.scope_node_stack) == 1: return None
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
        if len(self.scope_node_stack) == 1: return None
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):

        def pre_func():
            self._current_name_scope().args |= set(
                self._get_argument_names(node))

        def post_func():
            """ NOTE: why we need merge w_vars here ? 
                because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
            """
            from paddle.fluid.dygraph.dygraph_to_static.loop_transformer import WHILE_CONDITION_PREFIX, WHILE_BODY_PREFIX, FOR_CONDITION_PREFIX, FOR_BODY_PREFIX
            from paddle.fluid.dygraph.dygraph_to_static.ifelse_transformer import TRUE_FUNC_PREFIX, FALSE_FUNC_PREFIX
            control_flow_function_def = [
                WHILE_BODY_PREFIX, WHILE_BODY_PREFIX, FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX, TRUE_FUNC_PREFIX, FALSE_FUNC_PREFIX
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
                    if node.name.startswith(prefix): return True
                return False

            if self._father_name_scope() and is_control_flow_def_node():
                self._father_name_scope().w_vars |= self._current_name_scope(
                ).w_vars

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
        """ scope node main visit logic.
            pre_func and post_func is callbacks
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
        self._current_name_scope().father = self._nearest_function_scope()
        if pre_func: pre_func()
        self.generic_visit(node)
        if post_func: post_func()
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):

        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
            self._current_name_scope().created = self._nearest_function_scope(
            ).existed_vars() - node.before_created

        def pre_func():
            setattr(node, "before_created",
                    self._nearest_function_scope().existed_vars())

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

    def _get_argument_names(self, node):
        """ get all arguments name in the functiondef node.
            this node is local to the function and shouldn't 
            be created.
        """
        assert isinstance(
            node, gast.FunctionDef), "Input node is not function define node"
        names = [a for a in node.args.args]
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
        """.format(func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX))
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
    mapped = list(filter(lambda n: '.' not in n, names))
    nonlocal_names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
1852 1853 1854 1855 1856 1857
    if not names:
        return empty_node()
    if not nonlocal_names:
        nonlocal_vars = "\n"
    else:
        nonlocal_vars = "nonlocal " + ",".join(nonlocal_names)
1858 1859
    template = """
    def {func_name}():
1860
        {nonlocal_vars}
1861
        return {vars},
1862 1863 1864
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1865
        nonlocal_vars=nonlocal_vars,
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
        """.format(func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
                   args=ARGS_NAME)
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
    mapped = list(filter(lambda n: '.' not in n, names))
    nonlocal_names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
1892 1893 1894 1895 1896 1897
    if not names:
        return empty_node()
    if not nonlocal_names:
        nonlocal_vars = "\n"
    else:
        nonlocal_vars = "nonlocal " + ",".join(nonlocal_names)
1898 1899
    template = """
    def {func_name}({args}):
1900
        {nonlocal_vars}
1901
        {vars}, = {args}
1902 1903 1904 1905
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1906
        nonlocal_vars=nonlocal_vars,
1907 1908 1909 1910
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


1911
def create_nonlocal_stmt_nodes(names):
1912 1913 1914 1915 1916 1917
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
    names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
1918 1919
    if not names:
        return []
1920
    func_code = "nonlocal {}".format(','.join(names))
1921
    return [gast.parse(func_code).body[0]]