value.h 7.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <glog/logging.h>
#include <llvm/ADT/SmallVector.h>

#include <string>
#include <utility>
#include <vector>

#include "paddle/infrt/common/object.h"
#include "paddle/infrt/common/shared.h"
25
#include "paddle/infrt/dialect/infrt/common/types.h"
Y
Yan Chunwei 已提交
26
#include "paddle/infrt/host_context/function.h"
W
Wilber 已提交
27
#include "paddle/infrt/host_context/symbol_table.h"
Y
Yan Chunwei 已提交
28 29 30 31 32
#include "paddle/infrt/support/variant.h"
#include "paddle/infrt/tensor/dense_host_tensor.h"
#include "paddle/infrt/tensor/dense_tensor_view.h"
#include "paddle/infrt/tensor/tensor_map.h"
#include "paddle/infrt/tensor/tensor_shape.h"
33

34 35 36
#ifdef INFRT_WITH_PHI
#include "paddle/infrt/backends/host/phi_allocator.h"
#include "paddle/infrt/backends/host/phi_context.h"
37
#include "paddle/infrt/tensor/phi/tensor_map.h"
38 39 40
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
41
#include "paddle/phi/common/int_array.h"
42 43 44 45
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/meta_tensor.h"
W
Wilber 已提交
46 47 48 49 50 51 52 53 54

#ifdef INFRT_WITH_GPU
#include "paddle/phi/backends/gpu/gpu_context.h"
#endif  // INFRT_WITH_GPU
#ifdef INFRT_WITH_TRT
#include "paddle/infrt/backends/tensorrt/trt_engine.h"
#include "paddle/infrt/kernel/tensorrt/trt_kernels.h"
#endif  // INFRT_WITH_TRT
#endif  // INFRT_WITH_PHI
Y
Yan Chunwei 已提交
55 56 57 58

namespace infrt {
namespace host_context {

59 60
struct None {};

Y
Yan Chunwei 已提交
61 62
struct MlirFunctionExecutable;

W
Wilber 已提交
63
using ValueVariantType =
64 65
    Variant<None,
            int16_t,
W
Wilber 已提交
66 67 68 69 70 71 72 73 74 75 76 77
            int32_t,
            int64_t,
            float,
            double,
            bool,
            uint32_t,
            uint64_t,
            std::string,
            tensor::TensorShape,
            tensor::DenseHostTensor,
            MlirFunctionExecutable*,
            tensor::TensorMap,
78 79 80
            ::infrt::PrecisionType,
            ::infrt::LayoutType,
            ::infrt::TargetType,
81
#ifdef INFRT_WITH_PHI
82 83
            ::phi::MetaTensor,
            ::phi::DenseTensor,
84
            backends::CpuPhiContext,
W
Wilber 已提交
85 86 87
#ifdef INFRT_WITH_GPU
            backends::GpuPhiContext,
            ::phi::GPUContext,
88
#endif  // INFRT_WITH_GPU
89
            ::phi::CPUContext,
90 91 92
            std::vector<const ::phi::DenseTensor*>,
            std::vector<::phi::DenseTensor*>,
            paddle::experimental::ScalarBase<::phi::DenseTensor>,
93
            paddle::experimental::IntArrayBase<::phi::DenseTensor>,
94 95
            std::vector<::phi::MetaTensor*>,
            ::phi::MetaConfig,
W
Wilber 已提交
96 97 98
            paddle::experimental::Backend,
            paddle::experimental::DataLayout,
            paddle::experimental::DataType,
99 100
            ::infrt::phi::DenseTensorMap,
#endif  // INFRT_WITH_PHI
W
Wilber 已提交
101 102 103 104
#ifdef INFRT_WITH_TRT
            ::infrt::backends::tensorrt::TrtEngine,
            ::infrt::kernel::tensorrt::MlirOperationWithInfrtSymbol,
#endif  // INFRT_WITH_TRT
W
Wilber 已提交
105 106 107 108 109
            std::vector<int16_t>,
            std::vector<int32_t>,
            std::vector<int64_t>,
            std::vector<float>,
            std::vector<double>>;
Y
Yan Chunwei 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

//! Copy content from \param from to \param to.
void CopyTo(const Value& from, Value* to);

/**
 * Represents any data type for value in host context.
 */
class Value : public common::Object {
 public:
  using variant_type = ValueVariantType;

  explicit Value() {}  // NOLINT
  explicit Value(int32_t x) : data(x) {}
  explicit Value(int64_t x) : data(x) {}
  explicit Value(float x) : data(x) {}
  explicit Value(double x) : data(x) {}
  explicit Value(bool x) : data(x) {}
127 128 129
  explicit Value(::infrt::TargetType x) : data(x) {}
  explicit Value(::infrt::LayoutType x) : data(x) {}
  explicit Value(::infrt::PrecisionType x) : data(x) {}
Y
Yan Chunwei 已提交
130 131 132 133 134 135 136 137 138 139
  explicit Value(std::string x) : data(x) {}
  explicit Value(tensor::TensorMap&& x) : data(x) {}
  explicit Value(std::vector<int16_t>&& x) : data(x) {}
  explicit Value(std::vector<int32_t>&& x) : data(x) {}
  explicit Value(std::vector<int64_t>&& x) : data(x) {}
  explicit Value(std::vector<float>&& x) : data(x) {}
  explicit Value(std::vector<double>&& x) : data(x) {}
  explicit Value(tensor::TensorShape&& x) : data(std::move(x)) {}
  explicit Value(tensor::DenseHostTensor&& x) : data(std::move(x)) {}
  explicit Value(MlirFunctionExecutable* x) : data(x) {}
140
#ifdef INFRT_WITH_PHI
141
  explicit Value(::infrt::phi::DenseTensorMap&& x) : data(std::move(x)) {}
142
  explicit Value(::phi::CPUContext&& x) : data(std::move(x)) {}
143
  explicit Value(backends::CpuPhiContext&& x) : data(std::move(x)) {}
W
Wilber 已提交
144 145 146 147
#ifdef INFRT_WITH_GPU
  explicit Value(::phi::GPUContext&& x) : data(std::move(x)) {}
  explicit Value(backends::GpuPhiContext&& x) : data(std::move(x)) {}
#endif
148 149
  explicit Value(::phi::DenseTensor&& x) : data(std::move(x)) {}
  explicit Value(::phi::MetaTensor&& x) : data(std::move(x)) {}
150
  explicit Value(::phi::MetaConfig&& x) : data(std::move(x)) {}
W
Wilber 已提交
151 152 153 154 155 156
#ifdef INFRT_WITH_TRT
  explicit Value(::infrt::backends::tensorrt::TrtEngine&& x)
      : data(std::move(x)) {}
  explicit Value(::infrt::kernel::tensorrt::MlirOperationWithInfrtSymbol x)
      : data(x) {}
#endif  // INFRT_WITH_TRT
157
#endif
Y
Yan Chunwei 已提交
158 159 160

  template <typename T>
  const T& get() const {
161 162
    CHECK(data.template is<T>()) << "typeid: " << data.index()
                                 << " != " << ValueVariantType::IndexOf<T>;
Y
Yan Chunwei 已提交
163 164
    return data.get<T>();
  }
165

Y
Yan Chunwei 已提交
166 167
  template <typename T>
  T& get() {
168 169
    CHECK(data.template is<T>()) << "typeid: " << data.index()
                                 << " != " << ValueVariantType::IndexOf<T>;
Y
Yan Chunwei 已提交
170 171 172
    return data.get<T>();
  }

173 174 175 176 177 178 179 180 181
  //! Get the value if assigned before or return a default value instead.
  template <class T>
  T& get_or_default() {
    if (!data.template is<T>()) {
      this->set(T{});
    }
    return get<T>();
  }

Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189 190
  template <typename T>
  void set(T&& v) {
    data = std::move(v);
  }

  void set(Value* v) { data = std::move(v->data); }

  bool valid() const { return true; }

191 192 193 194 195
  template <typename T>
  bool is_type() const {
    return data.template is<T>();
  }

Y
Yan Chunwei 已提交
196 197
  const char* type_info() const override;

198 199
  ValueVariantType::IndexT index() const { return data.index(); }

Y
Yan Chunwei 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  friend void CopyTo(const Value& from, Value* to);

 private:
  ValueVariantType data;
  static constexpr const char* __type_info__ = "host_context_value";
};

/**
 * Represents a counted reference of a Value.
 */
class ValueRef : common::Shared<Value> {
 public:
  ValueRef() = default;
  explicit ValueRef(Value* n) : common::Shared<Value>(n) {}
  explicit ValueRef(int32_t val);
  explicit ValueRef(int64_t val);
  explicit ValueRef(float val);
  explicit ValueRef(double val);
  explicit ValueRef(bool val);

  using common::Shared<Value>::get;
  using common::Shared<Value>::Reset;
  using common::Shared<Value>::operator->;
  using common::Shared<Value>::operator*;
224

Y
Yan Chunwei 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
  //! Get a readonly data.
  template <typename T>
  const T& get() const {
    CHECK(p_);
    return p_->get<T>();
  }

  template <typename T>
  T& get() {
    CHECK(p_);
    return p_->get<T>();
  }

  //! Assign a data.
  template <typename T>
  void Assign(const T& x) {
    if (!p_) {
      p_ = common::make_shared<Value>();
    }
    *p_ = x;
  }

  template <typename T, typename... Args>
  void Assign(Args... args) {
    p_ = common::make_shared<T>(std::forward<Args>(args)...);
  }

  inline bool IsValid() { return p_; }
};

}  // namespace host_context
}  // namespace infrt