tester_helper.h 13.1 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
L
luotao1 已提交
18
#include <algorithm>
T
Tao Luo 已提交
19
#include <string>
L
luotao1 已提交
20 21
#include <thread>  // NOLINT
#include <vector>
22

L
luotao1 已提交
23
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
24
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
25 26 27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
29 30 31

#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
32
#include "paddle/fluid/inference/tests/test_helper.h"
L
luotao1 已提交
33 34 35 36 37 38 39 40
#include "paddle/fluid/platform/profiler.h"

DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
41 42
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
L
luotao1 已提交
43

44
DECLARE_bool(profile);
L
luotao1 已提交
45
DECLARE_int32(paddle_num_threads);
46

L
luotao1 已提交
47 48 49
namespace paddle {
namespace inference {

50 51 52 53 54
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
  if (use_analysis) {
    LOG(INFO) << *reinterpret_cast<const contrib::AnalysisConfig *>(config);
    return;
  }
55
  LOG(INFO) << *reinterpret_cast<const NativeConfig *>(config);
56
}
Y
Yan Chunwei 已提交
57

L
luotao1 已提交
58
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
59
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
60
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
61
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
62 63
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
64
    auto &ref_out = ref_outputs[i];
65 66
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
67
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
        }
        break;
      }
L
luotao1 已提交
87 88 89 90
    }
  }
}

91
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
92
    const PaddlePredictor::Config *config, bool use_analysis = true) {
T
Tao Luo 已提交
93
  if (use_analysis) {
94 95
    return CreatePaddlePredictor<contrib::AnalysisConfig>(
        *(reinterpret_cast<const contrib::AnalysisConfig *>(config)));
T
Tao Luo 已提交
96
  }
97 98
  return CreatePaddlePredictor<NativeConfig>(
      *(reinterpret_cast<const NativeConfig *>(config)));
T
Tao Luo 已提交
99 100
}

101
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
102

103
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
104
                                                   int *num_ops) {
105
  std::unordered_map<std::string, int> res;
106
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
107 108 109 110 111 112
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
113 114 115 116
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
117 118
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
119 120 121 122
      ++num;
    }
  }
  *num_ops = num;
123
  return *fusion_status;
T
Tao Luo 已提交
124 125
}

T
Tao Luo 已提交
126
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
127 128 129
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
                       std::string params_filename = "params") {
T
Tao Luo 已提交
130 131
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
132 133 134 135 136 137 138 139 140 141 142 143
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();

T
Tao Luo 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  int dim1 = feed_target_shapes[0][1];
  int dim2 = feed_target_shapes[0][2];
  int dim3 = feed_target_shapes[0][3];

  PaddleTensor input;
  std::vector<int> shape({FLAGS_batch_size, dim1, dim2, dim3});
  input.shape = shape;
  input.dtype = PaddleDType::FLOAT32;

  // fill input data, for profile easily, do not use random data here.
  size_t size = FLAGS_batch_size * dim1 * dim2 * dim3;
  input.data.Resize(size * sizeof(float));
  float *input_data = static_cast<float *>(input.data.data());
  for (size_t i = 0; i < size; i++) {
    *(input_data + i) = static_cast<float>(i) / size;
  }

  std::vector<PaddleTensor> input_slots;
  input_slots.assign({input});
  (*inputs).emplace_back(input_slots);
}

L
luotao1 已提交
166
void TestOneThreadPrediction(
167
    const PaddlePredictor::Config *config,
168
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
169
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
L
luotao1 已提交
170 171
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
172
  auto predictor = CreateTestPredictor(config, use_analysis);
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

  // warmup run
  LOG(INFO) << "Warm up run...";
  {
    Timer warmup_timer;
    warmup_timer.tic();
    predictor->Run(inputs[0], outputs, batch_size);
    PrintTime(batch_size, 1, 1, 0, warmup_timer.toc(), 1);
#if !defined(_WIN32)
    if (FLAGS_profile) {
      paddle::platform::ResetProfiler();
    }
#endif
  }

  LOG(INFO) << "Run " << num_times << " times...";
  {
    Timer run_timer;
    run_timer.tic();
    for (int i = 0; i < num_times; i++) {
      for (size_t j = 0; j < inputs.size(); j++) {
        predictor->Run(inputs[j], outputs, batch_size);
      }
L
luotao1 已提交
196
    }
197 198
    PrintTime(batch_size, num_times, 1, 0, run_timer.toc() / num_times,
              inputs.size());
L
luotao1 已提交
199 200 201 202
  }
}

void TestMultiThreadPrediction(
203
    const PaddlePredictor::Config *config,
204
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
205 206
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
207 208 209
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  std::vector<std::thread> threads;
210
  auto main_predictor = CreateTestPredictor(config, use_analysis);
211 212

  size_t total_time{0};
L
luotao1 已提交
213 214 215 216 217
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
218 219 220
      // To ensure the thread binding correctly,
      // please clone inside the threadpool.
      auto predictor = main_predictor->Clone();
L
luotao1 已提交
221 222 223
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
224
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
225 226
      }
#endif
T
Tao Luo 已提交
227 228 229 230 231 232 233 234 235 236 237

      // warmup run
      LOG(INFO) << "Running thread " << tid << ", warm up run...";
      {
        Timer warmup_timer;
        warmup_timer.tic();
        predictor->Run(inputs[0], outputs, batch_size);
        PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
#if !defined(_WIN32)
        if (FLAGS_profile) {
          paddle::platform::ResetProfiler();
L
luotao1 已提交
238
        }
T
Tao Luo 已提交
239
#endif
L
luotao1 已提交
240
      }
241

T
Tao Luo 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
      LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
      {
        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
          for (const auto &input : inputs) {
            ASSERT_TRUE(predictor->Run(input, &outputs_tid));
          }
        }

        auto time = timer.toc();
        total_time += time;
        PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
                  inputs.size());
      }
L
luotao1 已提交
257 258 259 260 261 262 263
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

264
void TestPrediction(const PaddlePredictor::Config *config,
265
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
266 267
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
268
  PrintConfig(config, use_analysis);
L
luotao1 已提交
269
  if (num_threads == 1) {
T
Tao Luo 已提交
270
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
271
  } else {
T
Tao Luo 已提交
272 273
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
274 275 276
  }
}

T
Tao Luo 已提交
277
void CompareNativeAndAnalysis(
278
    const PaddlePredictor::Config *config,
279
    const std::vector<std::vector<PaddleTensor>> &inputs) {
280
  PrintConfig(config, true);
T
Tao Luo 已提交
281 282 283 284 285 286
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
    if (a.type() == typeid(float)) {
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    } else if (a.type() == typeid(int64_t)) {
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
409 410
}  // namespace inference
}  // namespace paddle