MKLDNNAddtoLayer.cpp 7.3 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNAddtoLayer.h"

using namespace mkldnn;  // NOLINT

namespace paddle {

REGISTER_LAYER(mkldnn_addto, MKLDNNAddtoLayer);

bool MKLDNNAddtoLayer::init(const LayerMap& layerMap,
                            const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }

  layerSize_ = getSize();
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    CHECK_EQ(layerSize_, inputLayers_[i]->getSize()) << "input size must equal";
  }
  if (biasParameter_.get() != NULL) {
    biases_ =
        std::unique_ptr<Weight>(new Weight(1, layerSize_, biasParameter_, 0));
  }
  return true;
}

void MKLDNNAddtoLayer::reshape(
41
    int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
T
tensor-tang 已提交
42 43 44 45
  CHECK_EQ(layerSize_, getSize()) << "this layer size can not be changed";
  reshapeInput(bs, ih, iw);
  ic = inputLayers_[0]->getSize() / ih / iw;
  CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize());
46 47
  CHECK_EQ(inputLayers_[0]->getOutputValue()->getElementCnt(),
           (size_t)bs * ic * ih * iw);
T
tensor-tang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    CHECK_EQ(int64_t(bs), inputLayers_[i]->getOutput().getBatchSize());
    CHECK_EQ(layerSize_, inputLayers_[i]->getSize());
  }

  oc = ic;
  oh = ih;
  ow = iw;
  reshapeOutput(oh, ow);
  resizeOutput(bs, oc * oh * ow);
}

void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,
61
                                std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
62
                                MKLDNNMatrixPtr& out) {
63
  resetFwdBuffers(inputs, biasVal_, out);
T
tensor-tang 已提交
64 65

  std::shared_ptr<sum::primitive_desc> fwdPD;
T
tensor-tang 已提交
66
  std::shared_ptr<sum::primitive_desc> biasPD;
67
  resetFwdPD(fwdPD, biasPD, inputs, biasVal_, out);
T
tensor-tang 已提交
68

69
  resetFwdPipeline(pipeline, fwdPD, biasPD, inputs, biasVal_, out);
T
tensor-tang 已提交
70 71 72
}

void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
73
                                std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
74
                                MKLDNNMatrixPtr& out) {
75
  resetBwdBuffers(inputs, biasGrad_, out);
T
tensor-tang 已提交
76 77

  // backward only need share output grad to input grad
78 79 80 81
  for (size_t i = 0; i < inputs.size(); i++) {
    if (inputs[i] != nullptr) {
      inputs[i] = out;
      inputLayers_[i]->getOutputGrad()->setData(inputs[i]->getData());
T
tensor-tang 已提交
82 83
    }
  }
T
tensor-tang 已提交
84 85 86

  // backward bias
  bwdBias_ = nullptr;
87
  if (biasGrad_) {
T
tensor-tang 已提交
88
    std::vector<float> scales(bs_, 1.0);
89 90 91 92
    std::vector<memory::primitive_desc> srcPDs(bs_,
                                               biasGrad_->getPrimitiveDesc());
    auto biasPD =
        sum::primitive_desc(biasGrad_->getMemoryDesc(), scales, srcPDs);
T
tensor-tang 已提交
93 94 95 96
    std::vector<primitive::at> srcs;
    for (size_t i = 0; i < grads_.size(); ++i) {
      srcs.push_back(*(grads_[i]));
    }
97
    bwdBias_.reset(new sum(biasPD, srcs, *biasGrad_));
T
tensor-tang 已提交
98 99
    pipeline.push_back(*bwdBias_);
  }
T
tensor-tang 已提交
100 101 102 103 104 105 106 107
}

void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
  if (biases_ && biases_->getWGrad()) {
    biases_->getParameterPtr()->incUpdate(callback);
  }
}

T
tensor-tang 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
void MKLDNNAddtoLayer::prepareBias(MKLDNNMatrixPtr& bias,
                                   const MatrixPtr& biasMat,
                                   const MKLDNNMatrixPtr& out,
                                   std::vector<MKLDNNMatrixPtr>& outs) {
  auto pd = MKLDNNMatrix::createPrimitiveDesc(
      {(int)layerSize_}, memory::format::x, engine_);
  bias = MKLDNNMatrix::create(pd, biasMat);
  outs.clear();
  real* data = out->getData();
  CHECK_EQ(bs_ * layerSize_, out->getElementCnt());
  for (int i = 0; i < bs_; ++i) {
    MatrixPtr tmp =
        Matrix::create(data + i * layerSize_, 1, layerSize_, false, false);
    outs.push_back(MKLDNNMatrix::create(bias->getPrimitiveDesc(), tmp));
  }
}

T
tensor-tang 已提交
125
void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
126
                                       MKLDNNMatrixPtr& bias,
T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135 136 137 138
                                       MKLDNNMatrixPtr& out) {
  inputs.resize(inputLayers_.size());
  for (size_t i = 0; i < inputs.size(); i++) {
    resetInValue(inputs[i], nullptr, i);
    CHECK(inputs[i]);
    inputs[i]->downSpatial();
  }
  for (size_t i = 1; i < inputs.size(); i++) {
    CHECK_PRIMITIVE_DESC_EQ(inputs[i], inputs[0]->getPrimitiveDesc());
  }

  resetOutValue(out, inputs[0]->getPrimitiveDesc());
T
tensor-tang 已提交
139 140 141 142 143 144

  if (biases_ && biases_->getW()) {
    prepareBias(bias, biases_->getW(), out, vals_);
  } else {
    bias = nullptr;
  }
T
tensor-tang 已提交
145 146 147
}

void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
T
tensor-tang 已提交
148
                                  std::shared_ptr<sum::primitive_desc>& biasPD,
T
tensor-tang 已提交
149
                                  std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
150
                                  MKLDNNMatrixPtr bias,
T
tensor-tang 已提交
151
                                  MKLDNNMatrixPtr out) {
T
tensor-tang 已提交
152
  std::vector<float> scales(inputs.size(), 1.0);
T
tensor-tang 已提交
153 154 155 156 157 158 159
  std::vector<memory::primitive_desc> srcPDs;
  for (size_t i = 0; i < inputs.size(); i++) {
    srcPDs.push_back(inputs[i]->getPrimitiveDesc());
  }
  CHECK(out);
  pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs));
  CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
T
tensor-tang 已提交
160 161 162

  biasPD = nullptr;
  if (bias) {
T
tensor-tang 已提交
163
    std::vector<float> scales(2, 1.0);
T
tensor-tang 已提交
164 165 166 167 168
    std::vector<memory::primitive_desc> srcPDs(2, bias->getPrimitiveDesc());
    biasPD.reset(
        new sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs));
    CHECK_PRIMITIVE_DESC_EQ(bias, biasPD->dst_primitive_desc());
  }
T
tensor-tang 已提交
169 170 171 172 173
}

void MKLDNNAddtoLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<sum::primitive_desc>& pd,
T
tensor-tang 已提交
174
    std::shared_ptr<sum::primitive_desc>& biasPD,
T
tensor-tang 已提交
175
    std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
176
    MKLDNNMatrixPtr& bias,
T
tensor-tang 已提交
177 178 179 180 181 182 183
    MKLDNNMatrixPtr& out) {
  std::vector<primitive::at> srcs;
  for (size_t i = 0; i < inputs.size(); i++) {
    srcs.push_back(*(inputs[i]));
  }
  fwd_.reset(new sum(*pd, srcs, *out));
  pipeline.push_back(*fwd_);
T
tensor-tang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196

  fwdBias_.clear();
  if (biasPD == nullptr || bias == nullptr) {
    return;
  }
  fwdBias_.resize(vals_.size());
  for (size_t i = 0; i < vals_.size(); ++i) {
    std::vector<primitive::at> srcs;
    srcs.push_back(*(vals_[i]));
    srcs.push_back(*bias);
    fwdBias_[i].reset(new sum(*biasPD, srcs, *vals_[i]));
    pipeline.push_back(*fwdBias_[i]);
  }
T
tensor-tang 已提交
197 198 199
}

void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
T
tensor-tang 已提交
200
                                       MKLDNNMatrixPtr& bias,
T
tensor-tang 已提交
201 202 203 204 205 206 207
                                       MKLDNNMatrixPtr& out) {
  CHECK(outVal_);
  resetOutGrad(out, outVal_->getPrimitiveDesc());
  CHECK(out);

  inputs.resize(inputLayers_.size());
  for (size_t i = 0; i < inputs.size(); i++) {
208
    resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i);
T
tensor-tang 已提交
209 210
    CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc());
  }
T
tensor-tang 已提交
211 212 213 214 215 216

  if (biases_ && biases_->getWGrad()) {
    prepareBias(bias, biases_->getWGrad(), out, grads_);
  } else {
    bias = nullptr;
  }
T
tensor-tang 已提交
217 218 219
}

}  // namespace paddle