rnn_memory_helper_op.cc 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yang(Tony) 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
Yang Yang(Tony) 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {
class RNNMemoryHelperOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperOp(const std::string &type,
                    const framework::VariableNameMap &inputs,
                    const framework::VariableNameMap &outputs,
                    const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
27 28 29 30

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    auto mem_var_name = Input("X");
    auto *mem_var = scope.FindVar(mem_var_name);
    PADDLE_ENFORCE(mem_var != nullptr,
                   "Cannot find mem_var in scope, mem_var_name is %s",
                   mem_var_name);

    auto out_name = this->Output("Out");
    auto *out_var = scope.FindVar(out_name);
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot find out_var in scope, out_var_name is %s",
                   out_name);

    auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
    auto &mem_tensor = mem_var->Get<framework::LoDTensor>();
    out_tensor->ShareDataWith(mem_tensor);
    out_tensor->set_lod(mem_tensor.lod());
  }
};

class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class RNNMemoryHelperOpInfoMaker : public framework::OpProtoAndCheckerMaker {
 public:
62
  RNNMemoryHelperOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yang Yang(Tony) 已提交
63 64 65
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "");
    AddOutput("Out", "");
F
fengjiayi 已提交
66
    AddAttr<int>("dtype",
Y
Yang Yang(Tony) 已提交
67 68
                 "(int, default 5 (FP32)) "
                 "Output data type")
K
Kavya Srinet 已提交
69
        .SetDefault(framework::proto::VarType::Type::FP32);
Y
Yang Yang(Tony) 已提交
70 71 72 73 74 75 76 77 78 79 80
    AddComment("");
  }
};

class RNNMemoryHelperGradOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperGradOp(const std::string &type,
                        const framework::VariableNameMap &inputs,
                        const framework::VariableNameMap &outputs,
                        const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
81 82 83 84

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    auto out_grad_var_name = Input(framework::GradVarName("Out"));
    auto *out_grad_var = scope.FindVar(out_grad_var_name);

    auto in_grad_var_name = Output(framework::GradVarName("X"));
    auto *in_grad_var = scope.FindVar(in_grad_var_name);
    PADDLE_ENFORCE(in_grad_var != nullptr,
                   "Cannot find in_grad_var in scope, name is %s",
                   in_grad_var_name);

    if (out_grad_var == nullptr) {
      VLOG(5) << "Using fill constant 0 as starting gradient";
      auto in_var_name = Input("X");
      auto *in_var = scope.FindVar(in_var_name);
      auto &in_var_tensor = in_var->Get<framework::LoDTensor>();

      framework::AttributeMap attrs;
F
fengjiayi 已提交
101
      attrs["dtype"] = framework::ToDataType(in_var_tensor.type());
Y
Yang Yang(Tony) 已提交
102 103 104 105 106
      attrs["shape"] = framework::vectorize2int(in_var_tensor.dims());
      attrs["value"] = 0.0f;

      auto zero_op = framework::OpRegistry::CreateOp(
          "fill_constant", {}, {{"Out", {in_grad_var_name}}}, attrs);
D
dzhwinter 已提交
107
      zero_op->Run(scope, dev_place);
Y
Yang Yang(Tony) 已提交
108 109 110 111 112 113 114 115 116 117 118 119
    } else {
      auto &out_grad_tensor = out_grad_var->Get<framework::LoDTensor>();
      auto *in_grad_tensor = in_grad_var->GetMutable<framework::LoDTensor>();
      in_grad_tensor->ShareDataWith(out_grad_tensor);
      in_grad_tensor->set_lod(out_grad_tensor.lod());
    }
  }
};

class RNNMemoryHelperGradOpInfoMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
120
  RNNMemoryHelperGradOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yang Yang(Tony) 已提交
121 122 123 124 125
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(framework::GradVarName("Out"), "");
    AddInput("X", "");
    AddInput("Out", "");
    AddOutput(framework::GradVarName("X"), "");
F
fengjiayi 已提交
126
    AddAttr<int>("dtype",
Y
Yang Yang(Tony) 已提交
127 128
                 "(int, default 5 (FP32)) "
                 "Output data type")
K
Kavya Srinet 已提交
129
        .SetDefault(framework::proto::VarType::Type::FP32);
Y
Yang Yang(Tony) 已提交
130 131 132 133 134 135 136 137 138
    AddComment("");
  }
};

class RNNMemoryHelperGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    PADDLE_ENFORCE(ctx->HasOutput(x_grad_name), "");
Y
Yu Yang 已提交
139 140 141
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
Y
Yang Yang(Tony) 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(rnn_memory_helper, paddle::operators::RNNMemoryHelperOp,
                  paddle::operators::RNNMemoryHelperOpInfoMaker,
                  paddle::operators::RNNMemoryHelperOpShapeInference,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(rnn_memory_helper_grad,
                  paddle::operators::RNNMemoryHelperGradOp,
                  paddle::operators::RNNMemoryHelperGradOpInfoMaker,
                  paddle::operators::RNNMemoryHelperGradOpShapeInference);