fused_softmax_mask.cu.h 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/kernels/funcs/aligned_vector.h"

namespace paddle {
namespace operators {

using framework::Tensor;

namespace plat = paddle::platform;

#define FINAL_MASK 0xffffffff
#define DIV_UP(x, y) (((x) + (y)-1) / (y))

template <typename T>
__inline__ __device__ T warpReduceSum(T val) {
#pragma unroll
  for (int mask = 16; mask > 0; mask >>= 1)
    val += __shfl_xor_sync(FINAL_MASK, val, mask, 32);
  return val;
}

template <typename T>
__inline__ __device__ T warpReduceMax(T val) {
#pragma unroll
  for (int mask = 16; mask > 0; mask >>= 1)
    val = max(val, __shfl_xor_sync(FINAL_MASK, val, mask, 32));
  return val;
}

inline int ElementsCeil(int seq_len) {
  int elements = 1;
  while (elements * 32 < seq_len) elements *= 2;
  return elements;
}

template <typename T, int VEC_SIZE, int ELEMENTS_PER_THREADS>
53 54 55
__global__ void FusedSoftmaxMaskVecKernel(T* dst,
                                          const T* src,
                                          const T* mask,
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
                                          int seq_len) {
  constexpr int block_size = 128;
  constexpr int warp_size = 32;
  constexpr int warps_per_block = block_size / warp_size;

  // blockDim/threadIdx = (warp_size, warps_per_block)
  // gridDim/blockIdx = (DIV_UP(seq_len, warps_per_block), batch_size, head_num)
  // every block processes 4(warps_per_block) sequences
  // seq_id = seq_id * 4 + warp_id, eg.seq_len=128, 127=31*4+3
  int seq_id = blockIdx.x * warps_per_block + threadIdx.y;
  if (seq_id >= seq_len) return;

  // ((bid*head_num + hid)*seq_len + seq_id) * seq_len
  int offset =
      ((blockIdx.y * gridDim.z + blockIdx.z) * seq_len + seq_id) * seq_len;
  // (bid * seq_len + seq_id) * seq_len
  int mask_offset = (blockIdx.y * seq_len + seq_id) * seq_len;
  src += offset;
  dst += offset;
  mask += mask_offset;

  static_assert(ELEMENTS_PER_THREADS % VEC_SIZE == 0, "");
  constexpr int VEC_NUMS = ELEMENTS_PER_THREADS / VEC_SIZE;
  using VecT = phi::AlignedVector<T, VEC_SIZE>;

  VecT elements[VEC_NUMS];
  VecT tmp_mask;
  float max_val = -std::numeric_limits<float>::infinity();

  for (int i = 0; (i * warp_size + threadIdx.x) * VEC_SIZE < seq_len; ++i) {
    phi::Load(src + (i * warp_size + threadIdx.x) * VEC_SIZE, &elements[i]);
    phi::Load(mask + (i * warp_size + threadIdx.x) * VEC_SIZE, &tmp_mask);
#pragma unroll
    for (int j = 0; j < VEC_SIZE; ++j) {
      // TODO(wangxi): vec add
      elements[i][j] += tmp_mask[j];
      max_val = max(max_val, static_cast<float>(elements[i][j]));
    }
  }
  max_val = warpReduceMax(max_val);

  float sum_val = 0;
  for (int i = 0; (i * warp_size + threadIdx.x) * VEC_SIZE < seq_len; ++i) {
#pragma unroll
    for (int j = 0; j < VEC_SIZE; ++j) {
      float tmp = __expf(static_cast<float>(elements[i][j]) - max_val);
      sum_val += tmp;
      elements[i][j] = static_cast<T>(tmp);
    }
  }
  sum_val = warpReduceSum(sum_val);
  float mean_val = __fdividef(1.0f, sum_val + 1e-6f);

  for (int i = 0; (i * warp_size + threadIdx.x) * VEC_SIZE < seq_len; ++i) {
#pragma unroll
    for (int j = 0; j < VEC_SIZE; ++j) {
      float tmp = static_cast<float>(elements[i][j]) * mean_val;
      elements[i][j] = static_cast<T>(tmp);
    }
    phi::Store(elements[i], dst + (i * warp_size + threadIdx.x) * VEC_SIZE);
  }
}

119 120 121
#define SOFTMAX_MASK_KERNEL(VEC_SIZE, ELEMENTS)    \
  FusedSoftmaxMaskVecKernel<T, VEC_SIZE, ELEMENTS> \
      <<<grid, block, 0, stream>>>(dst, src, mask, seq_len)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

// FIXME(wangxi): It is found that the performance of VEC_SIZE=2 is better
//  than that of =4 and =8. Further analysis of the kernel is needed later.
// #define SELECT_SOFTMAX_MASK_KERNEL(ELEMENTS) \
//   do { \
//     if (sizeof(T) == 2 && seq_len % 8 == 0) { \
//       FusedSoftmaxMaskVecKernel<plat::float16, 8, ELEMENTS> \
//            <<<grid, block, 0, stream>>>( \
//           (plat::float16*)dst, (const plat::float16*)src, mask, seq_len); \
//     } \
//     else if (seq_len % 4 == 0) SOFTMAX_MASK_KERNEL(4, ELEMENTS); \
//     else if (seq_len % 2 == 0) SOFTMAX_MASK_KERNEL(2, ELEMENTS); \
//     else SOFTMAX_MASK_KERNEL(1, ELEMENTS);   \
//   } while(0)

#define SELECT_SOFTMAX_MASK_KERNEL(ELEMENTS) \
  do {                                       \
    if (seq_len % 2 == 0) {                  \
      SOFTMAX_MASK_KERNEL(2, ELEMENTS);      \
    } else {                                 \
      SOFTMAX_MASK_KERNEL(1, ELEMENTS);      \
    }                                        \
  } while (0)

#define CASE_SOFTMAX_MASK_KERNEL(ELEMENTS) \
  case ELEMENTS: {                         \
    SELECT_SOFTMAX_MASK_KERNEL(ELEMENTS);  \
    break;                                 \
  }

// template <typename T, typename MaskT = T>
template <typename T>
154 155 156 157 158 159 160
void LaunchFusedSoftmaxMaskKernel(const T* src,
                                  const T* mask,
                                  T* dst,
                                  const int batch_size,
                                  const int head_num,
                                  const int seq_len,
                                  cudaStream_t stream) {
161
  PADDLE_ENFORCE_EQ(
162 163
      seq_len > 0 && seq_len <= 4096,
      true,
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
      platform::errors::InvalidArgument("seq_len must be between (0, 4096] "
                                        "received the seq_len is %d",
                                        seq_len));

  constexpr int block_size = 128;
  constexpr int warp_size = 32;
  constexpr int warps_per_block = block_size / warp_size;

  // put head_num to the outside for mask
  dim3 block(warp_size, warps_per_block);
  dim3 grid(DIV_UP(seq_len, warps_per_block), batch_size, head_num);

  int elements = ElementsCeil(seq_len);
  switch (elements) {
    case 1: {  // <=32
      SOFTMAX_MASK_KERNEL(1, 1);
      break;
    }
    case 2: {  // <=64
      // if (seq_len % 2 == 0) SOFTMAX_MASK_KERNEL(2, 2);
      // else SOFTMAX_MASK_KERNEL(1, 2);
      SELECT_SOFTMAX_MASK_KERNEL(2);
      break;
    }
    case 4: {  // <=128
      // if (seq_len % 4 == 0) SOFTMAX_MASK_KERNEL(4, 4);
      // else if (seq_len % 2 == 0) SOFTMAX_MASK_KERNEL(2, 4);
      // else SOFTMAX_MASK_KERNEL(1, 4);
      SELECT_SOFTMAX_MASK_KERNEL(4);
      break;
    }
195 196 197 198 199
      CASE_SOFTMAX_MASK_KERNEL(8);    // <=256
      CASE_SOFTMAX_MASK_KERNEL(16);   // <=512
      CASE_SOFTMAX_MASK_KERNEL(32);   // <=1024
      CASE_SOFTMAX_MASK_KERNEL(64);   // <=2048
      CASE_SOFTMAX_MASK_KERNEL(128);  // <=4096
200 201 202 203 204 205 206 207 208
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "seq_len must be between (0, 4096], received the seq_len is %d",
          seq_len));
  }
}

}  // namespace operators
}  // namespace paddle