analyzer_rnn1_tester.cc 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

L
luotao1 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
16

17 18
DEFINE_bool(with_precision_check, true, "turn on test");

19 20 21 22 23 24 25 26 27 28 29
namespace paddle {
namespace inference {

using namespace framework;  // NOLINT

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
T
Tao Luo 已提交
30
  size_t num_samples;  // total number of samples
31 32 33
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
34

35 36 37 38
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
T
Tao Luo 已提交
105
    num_samples = num_lines;
106 107
  }
};
108

109 110
void PrepareInputs(std::vector<PaddleTensor> *input_slots,
                   DataRecord *data,
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
                   int batch_size) {
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
  week_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
  week_tensor.lod.assign({one_batch.lod3});
  minute_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
  minute_tensor.lod.assign({one_batch.lod3});
  // assign data
  TensorAssignData<float>(&lod_attention_tensor,
                          std::vector<std::vector<float>>({{0, 0}}));
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
  TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
  TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
148 149 150 151 152
  input_slots->assign({week_tensor,
                       init_zero_tensor,
                       minute_tensor,
                       init_zero_tensor1,
                       lod_attention_tensor,
153 154 155 156 157 158
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

159 160 161 162 163 164
void PrepareZeroCopyInputs(ZeroCopyTensor *lod_attention_tensor,
                           ZeroCopyTensor *cell_init_tensor,
                           ZeroCopyTensor *data_tensor,
                           ZeroCopyTensor *hidden_init_tensor,
                           ZeroCopyTensor *week_tensor,
                           ZeroCopyTensor *minute_tensor,
165 166
                           DataRecord *data_record,
                           int batch_size) {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  auto one_batch = data_record->NextBatch();
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
  lod_attention_tensor->Reshape({1, 2});
  lod_attention_tensor->SetLoD({one_batch.lod1, one_batch.lod2});

  cell_init_tensor->Reshape({batch_size, 15});
  cell_init_tensor->SetLoD({one_batch.lod3});

  hidden_init_tensor->Reshape({batch_size, 15});
  hidden_init_tensor->SetLoD({one_batch.lod3});

  data_tensor->Reshape(rnn_link_data_shape);
  data_tensor->SetLoD({one_batch.lod1});

  week_tensor->Reshape(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
  week_tensor->SetLoD({one_batch.lod3});

  minute_tensor->Reshape(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
  minute_tensor->SetLoD({one_batch.lod3});

  // assign data
  float arr0[] = {0, 0};
  std::vector<float> zeros(batch_size * 15, 0);
196 197
  std::copy_n(
      arr0, 2, lod_attention_tensor->mutable_data<float>(PaddlePlace::kCPU));
198
  std::copy_n(arr0, 2, data_tensor->mutable_data<float>(PaddlePlace::kCPU));
199 200
  std::copy_n(zeros.begin(),
              zeros.size(),
201
              cell_init_tensor->mutable_data<float>(PaddlePlace::kCPU));
202 203
  std::copy_n(zeros.begin(),
              zeros.size(),
204 205 206 207 208 209 210
              hidden_init_tensor->mutable_data<float>(PaddlePlace::kCPU));
  ZeroCopyTensorAssignData(data_tensor, one_batch.rnn_link_data);
  ZeroCopyTensorAssignData(week_tensor, one_batch.rnn_week_datas);
  ZeroCopyTensorAssignData(minute_tensor, one_batch.rnn_minute_datas);
}

void SetConfig(AnalysisConfig *cfg) {
211 212 213 214
  cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
L
luotao1 已提交
215 216 217
  if (FLAGS_zero_copy) {
    cfg->SwitchUseFeedFetchOps(false);
  }
T
Tao Luo 已提交
218
}
219

T
Tao Luo 已提交
220 221
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
222
  std::vector<PaddleTensor> input_slots;
T
Tao Luo 已提交
223 224 225 226 227 228 229
  int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}
230

T
Tao Luo 已提交
231 232
// Easy for profiling independently.
TEST(Analyzer_rnn1, profile) {
233
  AnalysisConfig cfg;
T
Tao Luo 已提交
234
  SetConfig(&cfg);
235 236
  cfg.DisableGpu();
  cfg.SwitchIrDebug();
237
  std::vector<std::vector<PaddleTensor>> outputs;
238

L
luotao1 已提交
239
  std::vector<std::vector<PaddleTensor>> input_slots_all;
T
Tao Luo 已提交
240
  SetInput(&input_slots_all);
241
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
242 243 244
                 input_slots_all,
                 &outputs,
                 FLAGS_num_threads);
T
Tao Luo 已提交
245
}
246

T
Tao Luo 已提交
247 248
// Check the fuse status
TEST(Analyzer_rnn1, fuse_statis) {
249
  AnalysisConfig cfg;
T
Tao Luo 已提交
250
  SetConfig(&cfg);
251

T
Tao Luo 已提交
252
  int num_ops;
253 254 255
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
T
Tao Luo 已提交
256 257 258 259 260 261 262
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
  EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2);  // bi-directional LSTM
  EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
  EXPECT_EQ(num_ops,
            13);  // After graph optimization, only 13 operators exists.
}
263

T
Tao Luo 已提交
264 265
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_rnn1, compare) {
266
  AnalysisConfig cfg;
T
Tao Luo 已提交
267 268 269 270
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
271 272
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
273 274
}

L
luotao1 已提交
275 276 277 278 279 280 281 282 283 284 285
// Compare Deterministic result
TEST(Analyzer_rnn1, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

T
Tao Luo 已提交
286 287
// Test Multi-Thread.
TEST(Analyzer_rnn1, multi_thread) {
288
  AnalysisConfig cfg;
T
Tao Luo 已提交
289
  SetConfig(&cfg);
290
  std::vector<std::vector<PaddleTensor>> outputs;
291

T
Tao Luo 已提交
292 293
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
294
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
295 296 297
                 input_slots_all,
                 &outputs,
                 2 /* multi_thread */);
298 299
}

L
luotao1 已提交
300 301 302 303
// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
TEST(Analyzer_rnn1, compare_zero_copy) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
304

305 306 307
  AnalysisConfig cfg1;
  SetConfig(&cfg1);

L
luotao1 已提交
308 309 310 311 312
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  std::vector<std::string> outputs_name;
  outputs_name.emplace_back("final_output.tmp_1");
  CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
313
                             reinterpret_cast<PaddlePredictor::Config *>(&cfg1),
314 315
                             input_slots_all,
                             outputs_name);
316 317 318 319
}

}  // namespace inference
}  // namespace paddle