test_matrixCompare.cpp 38.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_ONLY_CPU
/// This unittest checks GpuMatrix/CpuMatrix get same result, so disable when
/// only cpu version.

#include <gtest/gtest.h>
Y
Yu Yang 已提交
20 21 22
#include "TensorCheck.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
23
#include "paddle/testing/TestUtil.h"
24
#include "paddle/utils/Stat.h"
Y
Yu Yang 已提交
25
#include "paddle/utils/Util.h"
26

Z
zhangjinchao01 已提交
27 28
using namespace paddle;  // NOLINT
using namespace std;     // NOLINT
29 30
using autotest::TensorCheckEqual;
using autotest::TensorCheckErr;
L
liaogang 已提交
31

Z
zhangjinchao01 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
void testMatrixMaxSequence(int batchSize, int inputDim) {
  // forward
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  int newBatchSize = cpuSequence->getSize() - 1;
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutput->zero();
  gpuOutput->zero();

  IVectorPtr cpuIndex = nullptr;
  IVectorPtr gpuIndex = nullptr;
  IVector::resizeOrCreate(cpuIndex, newBatchSize * inputDim, false);
  IVector::resizeOrCreate(gpuIndex, newBatchSize * inputDim, true);
  cpuIndex->zeroMem();
  gpuIndex->zeroMem();

  cpuOutput->maxSequenceForward(*cpuInput, *cpuSequence, *cpuIndex);
  gpuOutput->maxSequenceForward(*gpuInput, *gpuSequence, *gpuIndex);

60 61
  TensorCheckEqual(*cpuOutput, *gpuOutput);
  TensorCheckEqual(*cpuIndex, *gpuIndex);
Z
zhangjinchao01 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

  // backward
  MatrixPtr cpuOutputGrad = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutputGrad = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutputGrad->randomizeUniform();
  gpuOutputGrad->copyFrom(*cpuOutputGrad);

  MatrixPtr cpuInputGrad = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInputGrad = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInputGrad->randomizeUniform();
  gpuInputGrad->copyFrom(*cpuInputGrad);

  cpuInputGrad->maxSequenceBackward(*cpuOutputGrad, *cpuSequence, *cpuIndex);
  gpuInputGrad->maxSequenceBackward(*gpuOutputGrad, *gpuSequence, *gpuIndex);

77
  TensorCheckEqual(*cpuInputGrad, *gpuInputGrad);
Z
zhangjinchao01 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
}

TEST(Matrix, maxSequence) {
  for (auto batchSize : {1, 10, 128, 1000, 6000}) {
    for (auto inputDim : {1, 32, 100, 512}) {
      VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim;
      testMatrixMaxSequence(batchSize, inputDim);
    }
  }
}

void testMatrixGetSum(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

#ifndef PADDLE_TYPE_DOUBLE
  int x = log10(height * width);
  real err = 1e-6 * pow(10, x);
#else
  real err = 1e-8;
#endif

  real cpuSum = cpuInput->getSum();
  real gpuSum = gpuInput->getSum();

  EXPECT_LE(fabs(cpuSum - gpuSum), err);
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
void testMatrixGetMinMax(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  real cpuMin = cpuInput->getMin();
  real gpuMin = gpuInput->getMin();
  real cpuMax = cpuInput->getMax();
  real gpuMax = gpuInput->getMax();

  EXPECT_EQ(cpuMin, gpuMin);
  EXPECT_EQ(cpuMax, gpuMax);
}

Z
zhangjinchao01 已提交
123 124 125 126 127 128 129 130 131 132 133 134
void testMatrixZeroAtOffset(int height, int width) {
  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuTest = std::make_shared<CpuMatrix>(height, width);

  cpuA->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  cpuTest->copyFrom(*cpuA);

  int columnOffset = rand() % width;  // NOLINT we just use rand() for test.
  int numColumns = rand() % (width - columnOffset);  // NOLINT

135 136
  if (numColumns == 0) return;

Z
zhangjinchao01 已提交
137 138 139 140 141 142 143 144 145 146 147
  cpuA->zeroAtOffset(columnOffset, numColumns);
  gpuA->zeroAtOffset(columnOffset, numColumns);

  /* cpuTest */
  real* a = cpuTest->getData() + columnOffset;
  for (int64_t i = 0; i < height; ++i) {
    for (int64_t j = 0; j < numColumns; ++j) {
      a[i * width + j] = 0;
    }
  }

148 149
  TensorCheckEqual(*cpuA, *gpuA);
  TensorCheckEqual(*cpuA, *cpuTest);
Z
zhangjinchao01 已提交
150 151
}

X
xutianbing 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165
void testMatrixDeepSwap(int height, int width) {
  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuCopyA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuCopyB = std::make_shared<CpuMatrix>(height, width);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuCopyA->copyFrom(*cpuA);
  cpuCopyB->copyFrom(*cpuB);

  // swap matrix cpuA and cpuB
  cpuA->deepSwap(*cpuB);

H
hedaoyuan 已提交
166 167
  TensorCheckEqual(*cpuA, *cpuCopyB);
  TensorCheckEqual(*cpuB, *cpuCopyA);
X
xutianbing 已提交
168 169
}

Z
zhangjinchao01 已提交
170 171 172 173 174 175 176 177 178 179 180
void testMatrixTranspose(int height, int width) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuT = std::make_shared<CpuMatrix>(width, height);
  MatrixPtr gpuT = std::make_shared<GpuMatrix>(width, height);

  cpu->randomizeUniform();
  gpu->copyFrom(*cpu);
  cpu->transpose(cpuT, false);
  gpu->transpose(gpuT, false);

181
  TensorCheckEqual(*cpuT, *gpuT);
Z
zhangjinchao01 已提交
182 183
}

L
lzhao4ever 已提交
184 185 186 187 188 189
void testMatrixInverse(int height) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, height);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, height);
  MatrixPtr cpuI = std::make_shared<CpuMatrix>(height, height);
  MatrixPtr gpuI = std::make_shared<GpuMatrix>(height, height);

190
  /* Make matrix well conditioned: cpu * cpuT + Identity */
L
lzhao4ever 已提交
191
  cpu->randomizeUniform();
192 193
  MatrixPtr cpuT = cpu->getTranspose();
  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, height);
194
  outputCheck->mul(*cpu, *cpuT);
195 196 197
  cpu->setDiag(1.0);
  cpu->add(*outputCheck);

L
lzhao4ever 已提交
198
  gpu->copyFrom(*cpu);
199
  cpu->inverse(cpuI, true);
L
lzhao4ever 已提交
200 201
  gpu->inverse(gpuI, false);

202
  TensorCheckErr(*cpuI, *gpuI);
L
lzhao4ever 已提交
203

204
  outputCheck->mul(*cpu, *cpuI);
205
  cpu->setDiag(1.0);
206
  TensorCheckErr(*cpu, *outputCheck);
L
lzhao4ever 已提交
207 208
}

Z
zhangjinchao01 已提交
209
TEST(Matrix, unary) {
L
lzhao4ever 已提交
210 211
  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
Z
zhangjinchao01 已提交
212 213
      VLOG(3) << " height=" << height << " width=" << width;

214
      testMatrixDeepSwap(height, width);
215
      testMatrixZeroAtOffset(height, width);
Z
zhangjinchao01 已提交
216 217 218
      testMatrixGetSum(height, width);
      testMatrixTranspose(height, width);
    }
L
lzhao4ever 已提交
219 220
    // inverse
    testMatrixInverse(height);
Z
zhangjinchao01 已提交
221 222 223
  }
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
void testMatrixSoftmax(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->zero();
  gpuOutput->zero();
  cpuInput->softmax(*cpuOutput);
  gpuInput->softmax(*gpuOutput);

  TensorCheckErr(*cpuOutput, *gpuOutput);
}

Z
zhangjinchao01 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
void testSequenceSoftmax(int batchSize) {
  // forward
  int inputDim = 1;
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  cpuInput->sequenceSoftmax(*cpuInput, *cpuSequence);
  gpuInput->sequenceSoftmax(*gpuInput, *gpuSequence);

256
  TensorCheckErr(*cpuInput, *gpuInput);
Z
zhangjinchao01 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
}

void testMatrixSoftmaxThreshold(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  cpuInput->getData()[0] = 100.0;
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->zero();
  gpuOutput->zero();
  cpuInput->softmax(*cpuOutput);
  gpuInput->softmax(*gpuOutput);

  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
  outputCheck->copyFrom(*gpuOutput);
  // check output zero
  int cpuCount = 0;
  int gpuCount = 0;
  auto zeroNum = [](MatrixPtr out, int& count) {
    for (size_t i = 0; i < out->getHeight(); i++) {
      for (size_t j = 0; j < out->getWidth(); j++) {
        if (out->getElement(i, j) == 0) count++;
      }
    }
  };
  zeroNum(cpuOutput, cpuCount);
  zeroNum(outputCheck, gpuCount);
  EXPECT_EQ(cpuCount, 0) << "Cpu softmax output value 0";
  EXPECT_EQ(gpuCount, 0) << "Gpu softmax output value 0";
}

void testMatrixSoftmaxBp(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);
  gpuOutput->softmaxBackward(*gpuInput);

  MatrixPtr sftMaxSum = std::make_shared<CpuMatrix>(height, 1);
  MatrixPtr sftMaxDot = std::make_shared<CpuMatrix>(height, width);
  sftMaxDot->dotMul(*cpuOutput, *cpuInput);
  sftMaxSum->colMerge(*sftMaxDot);
  cpuOutput->softmaxDerivative(*cpuInput, *sftMaxSum);

309
  TensorCheckErr(*cpuOutput, *gpuOutput);
Z
zhangjinchao01 已提交
310 311 312 313 314 315 316
}

TEST(Matrix, softmax) {
  for (auto height : {1, 11, 73, 128, 200}) {
    for (auto width : {1, 32, 100, 512, 1000}) {
      VLOG(3) << " height=" << height << " width=" << width;

317
      testMatrixSoftmax(height, width);
Z
zhangjinchao01 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
      testMatrixSoftmaxBp(height, width);
      testMatrixSoftmaxThreshold(height, width);
    }
    testSequenceSoftmax(height);
  }
}

void testMatrixAddToRows(int numSamples, int tableSize, int inputDim) {
  MatrixPtr cpuTable = std::make_shared<CpuMatrix>(tableSize, inputDim);
  MatrixPtr gpuTable = std::make_shared<GpuMatrix>(tableSize, inputDim);
  cpuTable->randomizeUniform();
  gpuTable->copyFrom(*cpuTable);

  IVectorPtr cpuIds;
  IVectorPtr gpuIds;
  cpuIds = VectorT<int>::create(numSamples, false);
  gpuIds = VectorT<int>::create(numSamples, true);
  cpuIds->rand(tableSize);
  gpuIds->copyFrom(*cpuIds);

  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, inputDim);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);

  cpuOutput->addToRows(*cpuTable, *cpuIds);
  gpuOutput->addToRows(*gpuTable, *gpuIds);

346
  TensorCheckErr(*cpuTable, *gpuTable);
Z
zhangjinchao01 已提交
347 348 349 350 351 352 353
}

TEST(Matrix, tableProjection) {
  for (auto numSamples : {10, 100, 1000, 10000, 80000}) {
    for (auto tableSize : {10, 100}) {
      for (auto inputDim : {20, 50}) {
        VLOG(3) << " numSamples=" << numSamples << " tableSize=" << tableSize
354
                << " inputDim=" << inputDim;
Z
zhangjinchao01 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        testMatrixAddToRows(numSamples, tableSize, inputDim);
      }
    }
  }
}

void testMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
  int heightA = transa == false ? dimM : dimK;
  int widthA = transa == false ? dimK : dimM;
  int heightB = transb == false ? dimK : dimN;
  int widthB = transb == false ? dimN : dimK;
  int heightC = dimM;
  int widthC = dimN;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(heightA, widthA, transa);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(heightB, widthB, transb);
  MatrixPtr cpuC = std::make_shared<CpuMatrix>(heightC, widthC);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(heightA, widthA, transa);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(heightB, widthB, transb);
  MatrixPtr gpuC = std::make_shared<GpuMatrix>(heightC, widthC);

  real alpha = 1.5;
  real beta = 2.0;
  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  gpuB->copyFrom(*cpuB);
  gpuC->copyFrom(*cpuC);

385 386
  cpuC->mul(*cpuA, *cpuB, alpha, beta);
  gpuC->mul(*gpuA, *gpuB, alpha, beta);
Z
zhangjinchao01 已提交
387

388
  TensorCheckErr(*cpuC, *gpuC);
Z
zhangjinchao01 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
}

void testSubMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
  int heightA = transa == false ? dimM : dimK;
  int widthA = transa == false ? dimK : dimM;
  int heightB = transb == false ? dimK : dimN;
  int widthB = transb == false ? dimN : dimK;
  int heightC = dimM;
  int widthC = dimN;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(heightA, widthA, transa);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(heightB, widthB, transb);
  MatrixPtr cpuC = std::make_shared<CpuMatrix>(heightC, widthC);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(heightA, widthA, transa);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(heightB, widthB, transb);
  MatrixPtr gpuC = std::make_shared<GpuMatrix>(heightC, widthC);

  real alpha = 1.5;
  real beta = 2.0;
  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  gpuB->copyFrom(*cpuB);
  gpuC->copyFrom(*cpuC);

  auto subSize = [](int& start, int& end, int dim) {
    if (dim == 1) {
      start = 0;
      end = dim;
    } else {
      int subDim = rand() % (dim - 1) + 1;  // NOLINT
      start = rand() % (dim - subDim);      // NOLINT
      end = start + subDim;
    }
  };

426 427 428 429 430 431
  auto subMatrix = [](MatrixPtr& sub,
                      MatrixPtr matrix,
                      size_t startRow,
                      size_t endRow,
                      size_t startCol,
                      size_t endCol) {
Z
zhangjinchao01 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    if (!matrix->isTransposed()) {
      sub = matrix->subMatrix(startRow, endRow, startCol, endCol);
    } else {
      sub = matrix->subMatrix(startCol, endCol, startRow, endRow);
    }
  };

  int startM, endM;
  int startN, endN;
  int startK, endK;
  subSize(startM, endM, dimM);
  subSize(startN, endN, dimN);
  subSize(startK, endK, dimK);

  MatrixPtr subCpuA;
  MatrixPtr subCpuB;
  MatrixPtr subGpuA;
  MatrixPtr subGpuB;
  subMatrix(subCpuA, cpuA, startM, endM, startK, endK);
  subMatrix(subGpuA, gpuA, startM, endM, startK, endK);
  subMatrix(subCpuB, cpuB, startK, endK, startN, endN);
  subMatrix(subGpuB, gpuB, startK, endK, startN, endN);
  MatrixPtr subCpuC = cpuC->subMatrix(startM, endM, startN, endN);
  MatrixPtr subGpuC = gpuC->subMatrix(startM, endM, startN, endN);

457 458
  subCpuC->mul(*subCpuA, *subCpuB, alpha, beta);
  subGpuC->mul(*subGpuA, *subGpuB, alpha, beta);
Z
zhangjinchao01 已提交
459

460
  TensorCheckErr(*cpuC, *gpuC);
Z
zhangjinchao01 已提交
461 462 463 464 465 466 467 468 469 470 471 472
}

TEST(Matrix, mul) {
  for (auto transa : {false, true}) {
    for (auto transb : {false, true}) {
      for (auto dimM : {1, 9, 53, 127, 345, 1023, 2135}) {
        for (auto dimN : {1, 5, 37, 256, 1024}) {
          for (auto dimK : {8, 45, 346, 784, 1025}) {
            if (true == transa && true == transb) {
              continue;
            }
            VLOG(3) << setiosflags(ios::left) << setfill(' ')
473 474 475
                    << " transa=" << transa << " transb=" << transb
                    << " dimM=" << setw(5) << dimM << " dimN=" << setw(5)
                    << dimN << " dimK=" << setw(5) << dimK;
Z
zhangjinchao01 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

            testMatrixMul(transa, transb, dimM, dimN, dimK);
            testSubMatrixMul(transa, transb, dimM, dimN, dimK);
          }
        }
      }
    }
  }
}

void testVectorRowFunc(int size) {
  CpuVectorPtr cpu = std::make_shared<CpuVectorT<real>>(size);
  GpuVectorPtr gpu = std::make_shared<GpuVectorT<real>>(size);

  cpu->rand();
  gpu->copyFrom(*cpu);

  EXPECT_EQ(cpu->getMax(), gpu->getMax());
  EXPECT_EQ(cpu->getMin(), gpu->getMin());
  EXPECT_EQ(cpu->getAbsMax(), gpu->getAbsMax());
}

TEST(Vector, rowFunc) {
  for (auto size : {1, 5, 31, 90, 150, 500, 1000, 4000}) {
    VLOG(3) << " size=" << size;
    testVectorRowFunc(size);
  }
}

505
template <class T>
Z
zhangjinchao01 已提交
506 507 508 509 510 511 512 513
void testVectorReset(int size) {
  std::shared_ptr<CpuVectorT<T>> cpu = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpu = std::make_shared<GpuVectorT<T>>(size);

  T value = (T)((int)rand() % 100 + 1.0f / ((int)rand() % 100));
  cpu->reset(value);
  gpu->reset(value);

514
  TensorCheckEqual(*cpu, *gpu);
Z
zhangjinchao01 已提交
515 516
}

517
template <class T>
Z
zhangjinchao01 已提交
518 519 520
void testVecortSelectFrom(int size) {
  std::shared_ptr<CpuVectorT<T>> cpuDst = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuDst = std::make_shared<GpuVectorT<T>>(size);
521 522 523 524
  std::shared_ptr<CpuVectorT<T>> cpuSrc =
      std::make_shared<CpuVectorT<T>>(size * 2);
  std::shared_ptr<GpuVectorT<T>> gpuSrc =
      std::make_shared<GpuVectorT<T>>(size * 2);
Z
zhangjinchao01 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
  CpuIVectorPtr cpuIds = std::make_shared<CpuVectorT<int>>(size);
  GpuIVectorPtr gpuIds = std::make_shared<GpuVectorT<int>>(size);

  if (std::is_same<T, real>::value) {
    cpuSrc->rand();
  } else {
    cpuSrc->rand(100000);
  }
  gpuSrc->copyFrom(*cpuSrc);
  cpuIds->rand(size);
  gpuIds->copyFrom(*cpuIds);

  cpuDst->selectFrom(*cpuSrc, *cpuIds);
  gpuDst->selectFrom(*gpuSrc, *gpuIds);

540
  TensorCheckEqual(*cpuDst, *gpuDst);
Z
zhangjinchao01 已提交
541 542
}

543
template <class T>
Z
zhangjinchao01 已提交
544 545 546 547 548 549 550
void testVecotrZeroMem(int size) {
  std::shared_ptr<CpuVectorT<T>> cpu = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpu = std::make_shared<GpuVectorT<T>>(size);

  cpu->zeroMem();
  gpu->zeroMem();

551
  TensorCheckEqual(*cpu, *gpu);
Z
zhangjinchao01 已提交
552 553
}

554
template <class T>
Z
zhangjinchao01 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
void testVectorIsEqual(int size) {
  std::shared_ptr<CpuVectorT<T>> cpuA = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<CpuVectorT<T>> cpuB = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuA = std::make_shared<GpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuB = std::make_shared<GpuVectorT<T>>(size);

  if (std::is_same<T, real>::value) {
    cpuB->rand();
  } else {
    cpuB->rand(100000);
  }
  gpuB->copyFrom(*cpuB);

  T value = (T)((int)rand() % 100 + 1.0f / ((int)rand() % 100));
  cpuA->isEqualTo(*cpuB, value);
  gpuA->isEqualTo(*gpuB, value);

572
  TensorCheckEqual(*cpuA, *gpuA);
Z
zhangjinchao01 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
}

TEST(Vector, Equal) {
  for (auto size : {1, 5, 31, 90, 150, 500, 1000, 4000}) {
    VLOG(3) << " size=" << size;
    testVectorReset<int>(size);
    testVectorReset<real>(size);
    testVecortSelectFrom<int>(size);
    testVecortSelectFrom<real>(size);
    testVecotrZeroMem<int>(size);
    testVecotrZeroMem<real>(size);
    testVectorIsEqual<int>(size);
    testVectorIsEqual<real>(size);
  }
}

void testMatrixTopK(int samples, int dim, int beamSize) {
  MatrixPtr cpuSrc = std::make_shared<CpuMatrix>(samples, dim);
  MatrixPtr gpuSrc = std::make_shared<GpuMatrix>(samples, dim);
  MatrixPtr cpuVal = std::make_shared<CpuMatrix>(samples, beamSize);
  MatrixPtr gpuVal = std::make_shared<GpuMatrix>(samples, beamSize);
  IVectorPtr cpuIds = std::make_shared<CpuIVector>(samples * beamSize);
  IVectorPtr gpuIds = std::make_shared<GpuIVector>(samples * beamSize);

  cpuSrc->randomizeUniform();
  gpuSrc->copyFrom(*cpuSrc);

  cpuSrc->rowMax(*cpuIds, *cpuVal);
  gpuSrc->rowMax(*gpuIds, *gpuVal);

603
  TensorCheckEqual(*cpuVal, *gpuVal);
Z
zhangjinchao01 已提交
604 605 606 607
}

TEST(Matrix, topK) {
  for (auto samples : {1, 5, 31, 90, 150, 500}) {
608 609
    for (auto dim :
         {1, 5, 8, 10, 15, 64, 80, 120, 256, 300, 1280, 5120, 50000}) {
Z
zhangjinchao01 已提交
610 611
      for (auto beamSize : {1, 5, 10, 20, 40, (int)rand() % dim + 1}) {
        if (beamSize > dim) continue;
612
        VLOG(3) << " samples=" << samples << " beamSize=" << beamSize
Z
zhangjinchao01 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
                << " dim=" << dim;
        testMatrixTopK(samples, dim, beamSize);
      }
    }
  }
}

void testSMatrixTopK(int samples, int dim, int beamSize, real ratio) {
  int nnz = samples * dim * ratio;
  MatrixPtr cpuSrc = std::make_shared<CpuSparseMatrix>(samples, dim, nnz);
  MatrixPtr gpuSrc = std::make_shared<GpuSparseMatrix>(samples, dim, nnz);
  MatrixPtr cpuVal = std::make_shared<CpuMatrix>(samples, beamSize);
  MatrixPtr gpuVal = std::make_shared<GpuMatrix>(samples, beamSize);
  IVectorPtr cpuIds = std::make_shared<CpuIVector>(samples * beamSize);
  IVectorPtr gpuIds = std::make_shared<GpuIVector>(samples * beamSize);

  cpuSrc->randomizeUniform();
  gpuSrc->copyFrom(*cpuSrc);
  cpuVal->zero();
  cpuIds->zero();
  gpuVal->zero();
  gpuIds->zero();

  cpuSrc->rowMax(*cpuIds, *cpuVal);
  gpuSrc->rowMax(*gpuIds, *gpuVal);

639
  TensorCheckEqual(*cpuVal, *gpuVal);
Z
zhangjinchao01 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

  IVectorPtr outCheckIds = std::make_shared<CpuIVector>(samples * beamSize);
  outCheckIds->copyFrom(*gpuIds);

  const int* data1 = cpuIds->getData();
  const int* data2 = outCheckIds->getData();
  size_t size = cpuIds->getSize();
  for (size_t i = 0; i < size; i++) {
    if (data1[i] == -1 && data1[i] != data2[i]) {
      EXPECT_EQ(data1[i], data2[i]);
    }
  }
}

TEST(SMatrix, topK) {
  for (auto samples : {1, 5, 100}) {
    for (auto dim : {10000, 10000, 50000}) {
      for (auto beamSize : {1, 5, 40, 100, 500}) {
        for (auto ratio : {0.01, 0.001}) {
          if (beamSize > dim) continue;
660 661
          VLOG(3) << " samples=" << samples << " beamSize=" << beamSize
                  << " dim=" << dim << " ratio=" << ratio;
Z
zhangjinchao01 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
          testSMatrixTopK(samples, dim, beamSize, ratio);
        }
      }
    }
  }
}

void testMatrixSequenceAvgForward(int batchSize, int inputDim, int mode) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  int newBatchSize = cpuSequence->getSize() - 1;
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutput->zero();
  gpuOutput->zero();

  cpuOutput->sequenceAvgForward(*cpuInput, *cpuSequence, mode);
  gpuOutput->sequenceAvgForward(*gpuInput, *gpuSequence, mode);

689
  TensorCheckErr(*cpuOutput, *gpuOutput);
Z
zhangjinchao01 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703
}

TEST(Matrix, sequenceAvgForward) {
  for (auto batchSize : {10, 128, 6000}) {
    for (auto inputDim : {32, 100, 512}) {
      for (auto mode : {0, 1, 2}) {
        VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim
                << " mode=" << mode;
        testMatrixSequenceAvgForward(batchSize, inputDim, mode);
      }
    }
  }
}

704
void testCosSimDerivate(int heightX, int heightY, int width, real scale) {
Z
zhangjinchao01 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
  MatrixPtr prevOutX = CpuMatrix::create(heightX, width, false, false);
  MatrixPtr prevOutY = CpuMatrix::create(heightY, width, false, false);
  MatrixPtr grad = CpuMatrix::create(heightX, 1, false, false);
  MatrixPtr output = CpuMatrix::create(heightX, 1, false, false);
  MatrixPtr prevGradX = CpuMatrix::create(heightX, width, false, false);
  MatrixPtr prevGradY = CpuMatrix::create(heightY, width, false, false);

  prevOutX->randomizeUniform();
  prevOutY->randomizeUniform();
  grad->randomizeUniform();
  output->randomizeUniform();
  prevGradX->randomizeUniform();
  prevGradY->randomizeUniform();

  MatrixPtr prevOutXGpu = GpuMatrix::create(heightX, width, false, true);
  MatrixPtr prevOutYGpu = GpuMatrix::create(heightY, width, false, true);
  MatrixPtr gradGpu = GpuMatrix::create(heightX, 1, false, true);
  MatrixPtr outputGpu = GpuMatrix::create(heightX, 1, false, true);
  MatrixPtr prevGradXGpu = GpuMatrix::create(heightX, width, false, true);
  MatrixPtr prevGradYGpu = GpuMatrix::create(heightY, width, false, true);

  prevOutXGpu->copyFrom(*prevOutX);
  prevOutYGpu->copyFrom(*prevOutY);
  gradGpu->copyFrom(*grad);
  outputGpu->copyFrom(*output);
  prevGradXGpu->copyFrom(*prevGradX);
  prevGradYGpu->copyFrom(*prevGradY);

733 734
  grad->cosSimDerivative(
      *output, *prevOutX, *prevOutY, *prevGradX, *prevGradY, scale);
Z
zhangjinchao01 已提交
735 736 737 738 739 740 741 742

  gradGpu->cosSimDerivative(*outputGpu,
                            *prevOutXGpu,
                            *prevOutYGpu,
                            *prevGradXGpu,
                            *prevGradYGpu,
                            scale);

743 744
  TensorCheckErr(*prevGradX, *prevGradXGpu);
  TensorCheckErr(*prevGradY, *prevGradYGpu);
Z
zhangjinchao01 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758
}

TEST(Matrix, cosSimDerivate) {
  for (auto heightX : {1, 10, 100}) {
    for (auto heightY : {1, heightX}) {
      for (auto width : {1, 10, 100}) {
        for (auto scale : {1.0, 2.0}) {
          testCosSimDerivate(heightX, heightY, width, scale);
        }
      }
    }
  }
}

759 760 761 762
void testParamReluBackwardDiff(int height,
                               int width,
                               int w_height,
                               int w_width) {
Z
zhangjinchao01 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
  MatrixPtr oGrad = CpuMatrix::create(height, width, false, false);
  MatrixPtr input = CpuMatrix::create(height, width, false, false);
  MatrixPtr diff = CpuMatrix::create(height, width, false, false);
  MatrixPtr w = CpuMatrix::create(w_height, w_width, false, false);

  oGrad->randomizeUniform();
  input->randomizeUniform();
  w->randomizeUniform();
  diff->randomizeUniform();
  input->add(-0.5);

  MatrixPtr oGradGpu = GpuMatrix::create(height, width, false, true);
  MatrixPtr inputGpu = GpuMatrix::create(height, width, false, true);
  MatrixPtr diffGpu = CpuMatrix::create(height, width, false, true);
  MatrixPtr wGpu = GpuMatrix::create(w_height, w_width, false, true);

  oGradGpu->copyFrom(*oGrad);
  inputGpu->copyFrom(*input);
  wGpu->copyFrom(*w);
  diffGpu->copyFrom(*diff);

  diff->paramReluBackwardDiff(*oGrad, *input, *w);
  diffGpu->paramReluBackwardDiff(*oGradGpu, *inputGpu, *wGpu);

787
  TensorCheckErr(*diff, *diffGpu);
Z
zhangjinchao01 已提交
788 789 790
}

TEST(Matrix, paramReluBackwardDiff) {
H
hedaoyuan 已提交
791 792
  for (auto height : {10, 40, 100}) {
    for (auto width : {10, 40, 100}) {
Z
zhangjinchao01 已提交
793 794
      for (auto w_height : {1, 2}) {
        for (auto w_width : {1, 2}) {
H
hedaoyuan 已提交
795
          if (width % (w_height * w_width)) continue;
Z
zhangjinchao01 已提交
796 797 798 799 800 801 802
          testParamReluBackwardDiff(height, width, w_height, w_width);
        }
      }
    }
  }
}

H
He 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815
void testClassificationError(int numSamples, int dim) {
  MatrixPtr cpuError = std::make_shared<CpuMatrix>(numSamples, 1);
  MatrixPtr gpuError = std::make_shared<GpuMatrix>(numSamples, 1);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, dim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, dim);
  IVectorPtr cpuLabel = std::make_shared<CpuIVector>(numSamples);
  IVectorPtr gpuLabel = std::make_shared<GpuIVector>(numSamples);

  cpuOutput->randomizeUniform();
  cpuLabel->rand(dim);
  gpuOutput->copyFrom(*cpuOutput);
  gpuLabel->copyFrom(*cpuLabel);

816 817
  cpuError->classificationError(*cpuOutput, *cpuLabel);
  gpuError->classificationError(*gpuOutput, *gpuLabel);
H
He 已提交
818

819
  TensorCheckEqual(*cpuError, *gpuError);
H
He 已提交
820 821 822 823 824 825 826 827 828 829 830
}

TEST(Matrix, classificationError) {
  for (auto numSamples : {1, 10, 100, 1000, 70000}) {
    for (auto dim : {1, 10, 100, 1000}) {
      VLOG(3) << " numSamples=" << numSamples << " dim=" << dim;
      testClassificationError(numSamples, dim);
    }
  }
}

831 832 833 834 835 836 837 838 839 840
void testMaxPoolFwdBwd(int numSamples,
                       int channels,
                       int imgSizeH,
                       int imgSizeW,
                       int ksizeH,
                       int ksizeW,
                       int strideH,
                       int strideW,
                       int padH,
                       int padW) {
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
  int outH = 0, outW = 0;
  outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
  outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;

  int inWidth = imgSizeH * imgSizeW * channels;
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  int outWidth = channels * outH * outW;
  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  input->randomizeUniform();
  target->randomizeUniform();
  inputGpu->copyFrom(*input);
  targetGpu->copyFrom(*target);

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
  target->maxPoolForward(*input,
                         imgSizeH,
                         imgSizeW,
                         channels,
                         ksizeW,
                         ksizeH,
                         strideH,
                         strideW,
                         outH,
                         outW,
                         padH,
                         padW);
  targetGpu->maxPoolForward(*inputGpu,
                            imgSizeH,
                            imgSizeW,
                            channels,
                            ksizeW,
                            ksizeH,
                            strideH,
                            strideW,
                            outH,
                            outW,
                            padH,
                            padW);
882 883 884 885 886 887 888
  MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);
  targetCheck->copyFrom(*targetGpu);
  checkMatrixEqual(target, targetCheck);

  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
889 890
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
891 892 893 894 895 896

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
  inputGrad->maxPoolBackward(*input,
                             imgSizeH,
                             imgSizeW,
                             *targetGrad,
                             *target,
                             ksizeW,
                             ksizeH,
                             strideH,
                             strideW,
                             outH,
                             outW,
                             1.0,
                             1.0,
                             padH,
                             padW);
  inputGpuGrad->maxPoolBackward(*inputGpu,
                                imgSizeH,
                                imgSizeW,
                                *targetGpuGrad,
                                *targetGpu,
                                ksizeW,
                                ksizeH,
                                strideH,
                                strideW,
                                outH,
                                outW,
                                1.0,
                                1.0,
                                padH,
                                padW);
  MatrixPtr targetBwdCheck =
      CpuMatrix::create(numSamples, inWidth, false, false);
929 930 931 932
  targetBwdCheck->copyFrom(*inputGpuGrad);
  checkMatrixEqual(inputGrad, targetBwdCheck);
}

933 934 935 936 937 938 939 940 941 942
void testAvgPoolFwdBwd(int numSamples,
                       int channels,
                       int imgSizeH,
                       int imgSizeW,
                       int ksizeH,
                       int ksizeW,
                       int strideH,
                       int strideW,
                       int padH,
                       int padW) {
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
  int outH = 0, outW = 0;
  outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
  outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;

  int inWidth = imgSizeH * imgSizeW * channels;
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  int outWidth = channels * outH * outW;
  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  input->randomizeUniform();
  target->randomizeUniform();
  inputGpu->copyFrom(*input);
  targetGpu->copyFrom(*target);

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
  target->avgPoolForward(*input,
                         imgSizeH,
                         imgSizeW,
                         channels,
                         ksizeW,
                         ksizeH,
                         strideH,
                         strideW,
                         outH,
                         outW,
                         padH,
                         padW);
  targetGpu->avgPoolForward(*inputGpu,
                            imgSizeH,
                            imgSizeW,
                            channels,
                            ksizeW,
                            ksizeH,
                            strideH,
                            strideW,
                            outH,
                            outW,
                            padH,
                            padW);
984 985

  TensorCheckErr(*target, *targetGpu);
986 987 988 989

  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
990 991
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
992 993 994 995 996 997

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
  inputGrad->avgPoolBackward(*targetGrad,
                             imgSizeH,
                             imgSizeW,
                             ksizeW,
                             ksizeH,
                             strideH,
                             strideW,
                             outH,
                             outW,
                             1.0,
                             1.0,
                             padH,
                             padW);
  inputGpuGrad->avgPoolBackward(*targetGpuGrad,
                                imgSizeH,
                                imgSizeW,
                                ksizeW,
                                ksizeH,
                                strideH,
                                strideW,
                                outH,
                                outW,
                                1.0,
                                1.0,
                                padH,
                                padW);
1024 1025

  TensorCheckErr(*inputGrad, *inputGpuGrad);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
}

TEST(Matrix, PoolFwdBwd) {
  for (auto numSamples : {5, 32}) {
    for (auto channels : {1, 9, 32}) {
      for (auto imgSizeH : {14, 28}) {
        for (auto imgSizeW : {16, 30}) {
          for (auto sizeX : {2, 5}) {
            for (auto sizeY : {2, 5}) {
              for (auto sH : {1, 2}) {
                for (auto sW : {1, 2}) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
                  for (auto pH : {0, (sizeY - 1) / 2}) {
                    for (auto pW : {0, (sizeX - 1) / 2}) {
                      VLOG(3) << " numSamples=" << numSamples
                              << " channels=" << channels
                              << " imgSizeH=" << imgSizeH
                              << " imgSizeW=" << imgSizeW << " sizeX=" << sizeX
                              << " sizeY=" << sizeY << " strideH=" << sH
                              << " strideW=" << sW << " padingH=" << pH
                              << " padingW=" << pW;
                      testMaxPoolFwdBwd(numSamples,
                                        channels,
                                        imgSizeH,
                                        imgSizeW,
                                        sizeX,
                                        sizeY,
                                        sH,
                                        sW,
                                        pH,
                                        pW);
                      testAvgPoolFwdBwd(numSamples,
                                        channels,
                                        imgSizeH,
                                        imgSizeW,
                                        sizeX,
                                        sizeY,
                                        sH,
                                        sW,
                                        pH,
                                        pW);
                    }
                  }
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
                }
              }
            }
          }
        }
      }
    }
  }
}

1078 1079
void testMaxOutFwdBwd(
    int numSamples, int imgSizeH, int imgSizeW, int channels, int groups) {
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
  int inWidth = imgSizeH * imgSizeW * channels;
  int outChannels = channels / groups;
  int outWidth = imgSizeH * imgSizeW * outChannels;

  // forward
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  IVectorPtr id = CpuIVector::create(numSamples * outWidth, false);
  IVectorPtr idGpu = GpuIVector::create(numSamples * outWidth, true);

  input->randomizeUniform();
  inputGpu->copyFrom(*input);

  target->maxoutForward(*input, *id, outChannels, groups);
  targetGpu->maxoutForward(*inputGpu, *idGpu, outChannels, groups);

1100 1101
  TensorCheckErr(*target, *targetGpu);
  TensorCheckEqual(*id, *idGpu);
1102 1103 1104 1105 1106 1107

  // backward
  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
1108 1109
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
1110 1111 1112 1113 1114 1115 1116 1117 1118

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

  inputGrad->maxoutBackward(*targetGrad, *id, outChannels, groups);
  inputGpuGrad->maxoutBackward(*targetGpuGrad, *idGpu, outChannels, groups);

1119
  TensorCheckErr(*inputGrad, *inputGpuGrad);
1120 1121 1122 1123 1124 1125 1126 1127
}

TEST(Matrix, MaxOutFwdBwd) {
  for (auto numSamples : {5, 10}) {
    for (auto channels : {8, 16}) {
      for (auto imgSizeH : {14, 28}) {
        for (auto imgSizeW : {16, 30}) {
          for (auto groups : {2, 4}) {
1128 1129
            VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
                    << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
1130 1131 1132 1133 1134 1135 1136 1137 1138
                    << " groups=" << groups;
            testMaxOutFwdBwd(numSamples, imgSizeH, imgSizeW, channels, groups);
          }
        }
      }
    }
  }
}

Z
zhangjinchao01 已提交
1139
#endif