elementwise_mul_op.h 3.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/elementwise_op_function.h"
17
#include "paddle/fluid/operators/math/blas.h"
18 19 20 21

namespace paddle {
namespace operators {

22 23 24 25 26
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        MulFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  blas.VMUL(x->numel(), x->data<T>(), y->data<T>(),
            z->mutable_data<T>(ctx.GetPlace()));
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
  default_elementwise_mul<DeviceContext, T>(ctx, x, y, z);
}

Q
QI JUN 已提交
58
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
59
class ElementwiseMulKernel : public framework::OpKernel<T> {
60 61
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
62 63 64 65 66 67
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
68 69 70 71 72
    if (x->numel() == y->numel()) {
      elementwise_mul<DeviceContext, T>(ctx, x, y, z);
    } else {
      default_elementwise_mul<DeviceContext, T>(ctx, x, y, z);
    }
G
gongweibao 已提交
73 74
  }
};
75

G
gongweibao 已提交
76
template <typename T>
C
chengduoZH 已提交
77
struct MulGradDX {
C
chengduoZH 已提交
78
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
79 80
};

G
gongweibao 已提交
81
template <typename T>
C
chengduoZH 已提交
82
struct MulGradDY {
C
chengduoZH 已提交
83
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
84
};
C
chengduoZH 已提交
85

Q
QI JUN 已提交
86
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
87
class ElementwiseMulGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
88 89
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
90 91 92 93 94 95 96 97 98
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
99 100
    ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
G
gongweibao 已提交
101 102
  }
};
103 104
}  // namespace operators
}  // namespace paddle