notest_understand_sentiment.py 8.8 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import contextlib
16
import math
武毅 已提交
17
import os
18 19 20 21 22 23
import sys
import unittest

import numpy as np

import paddle
24
from paddle import fluid
25 26


27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
def convolution_net(
    data, label, input_dim, class_dim=2, emb_dim=32, hid_dim=32
):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True
    )
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt",
    )
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt",
    )
C
Charles-hit 已提交
47 48
    prediction = paddle.static.nn.fc(
        x=[conv_3, conv_4], size=class_dim, activation="softmax"
49
    )
50 51 52
    cost = paddle.nn.functional.cross_entropy(
        input=prediction, label=label, reduction='none', use_softmax=False
    )
53
    avg_cost = paddle.mean(cost)
54
    accuracy = paddle.static.accuracy(input=prediction, label=label)
55
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
56 57


58 59 60 61 62 63 64 65
def train(
    word_dict,
    net_method,
    use_cuda,
    parallel=False,
    save_dirname=None,
    is_local=True,
):
66 67
    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
68 69 70
    dict_dim = len(word_dict)
    class_dim = 2

G
GGBond8488 已提交
71 72
    data = paddle.static.data(
        name="words", shape=[-1, 1], dtype="int64", lod_level=1
73
    )
G
GGBond8488 已提交
74
    label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64")
75 76

    if not parallel:
77 78 79
        cost, acc_out, prediction = net_method(
            data, label, input_dim=dict_dim, class_dim=class_dim
        )
80
    else:
X
Xin Pan 已提交
81
        raise NotImplementedError()
82 83

    adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
W
Wu Yi 已提交
84
    adagrad.minimize(cost)
Q
QI JUN 已提交
85

86 87 88 89 90 91
    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=1000
        ),
        batch_size=BATCH_SIZE,
    )
92
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
93
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
94
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
95

武毅 已提交
96 97 98
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

99
        for pass_id in range(PASS_NUM):
武毅 已提交
100
            for data in train_data():
101 102 103 104 105
                cost_val, acc_val = exe.run(
                    main_program,
                    feed=feeder.feed(data),
                    fetch_list=[cost, acc_out],
                )
106
                print("cost=" + str(cost_val) + " acc=" + str(acc_val))
武毅 已提交
107 108
                if cost_val < 0.4 and acc_val > 0.8:
                    if save_dirname is not None:
109 110 111
                        fluid.io.save_inference_model(
                            save_dirname, ["words"], prediction, exe
                        )
武毅 已提交
112 113 114
                    return
                if math.isnan(float(cost_val)):
                    sys.exit("got NaN loss, training failed.")
115 116 117
        raise AssertionError(
            "Cost is too large for {0}".format(net_method.__name__)
        )
武毅 已提交
118 119 120 121

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
122 123
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
124 125 126 127
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
128
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
129
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
130 131
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
132
        t = paddle.distributed.transpiler.DistributeTranspiler()
Y
Yancey1989 已提交
133
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
134 135
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
136 137 138
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
139 140 141 142
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
143 144


L
Liu Yiqun 已提交
145
def infer(word_dict, use_cuda, save_dirname=None):
146 147 148 149 150 151
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

152 153 154
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
155
        # the feed_target_names (the names of variables that will be fed
156 157
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
158 159 160 161 162
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(save_dirname, exe)
163 164 165

        word_dict_len = len(word_dict)

K
Kexin Zhao 已提交
166
        # Setup input by creating LoDTensor to represent sequence of words.
167 168
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
K
Kexin Zhao 已提交
169
        # look up for the corresponding word vector.
170
        # Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
171 172 173 174
        # which has only one level of detail. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
175 176
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[3, 4, 2]]
K
Kexin Zhao 已提交
177 178
        base_shape = [1]
        # The range of random integers is [low, high]
179 180 181
        tensor_words = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=word_dict_len - 1
        )
182 183 184 185

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == "words"
186 187 188 189 190 191
        results = exe.run(
            inference_program,
            feed={feed_target_names[0]: tensor_words},
            fetch_list=fetch_targets,
            return_numpy=False,
        )
192
        print(results[0].recursive_sequence_lengths())
193
        np_data = np.array(results[0])
194 195
        print("Inference Shape: ", np_data.shape)
        print("Inference results: ", np_data)
196 197


198
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
199 200 201
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

202 203 204 205 206 207 208
    train(
        word_dict,
        net_method,
        use_cuda,
        parallel=parallel,
        save_dirname=save_dirname,
    )
209
    infer(word_dict, use_cuda, save_dirname)
210 211


212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
class TestUnderstandSentiment(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
228 229 230 231 232 233
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
                save_dirname="understand_sentiment_conv.inference.model",
            )
234

235 236
    def test_conv_cpu_parallel(self):
        with self.new_program_scope():
237 238 239 240 241 242
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
                parallel=True,
            )
243

244 245
    def test_conv_gpu(self):
        with self.new_program_scope():
246 247 248 249 250 251
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
                save_dirname="understand_sentiment_conv.inference.model",
            )
252 253 254

    def test_conv_gpu_parallel(self):
        with self.new_program_scope():
255 256 257 258 259 260
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
                parallel=True,
            )
261

Q
QI JUN 已提交
262 263

if __name__ == '__main__':
264
    unittest.main()