utils.py 20.6 KB
Newer Older
1 2
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation.  All rights reserved.
3
#
4 5 6
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
7
#
8
#     http://www.apache.org/licenses/LICENSE-2.0
9
#
10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities of Auto SParsity (ASP).
"""

import collections
20 21
import sys
import threading
22 23 24
from enum import Enum
from itertools import permutations

25 26 27
import numpy as np

__all__ = []
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


class MaskAlgo(Enum):
    r"""
    A collection of all mask generating algorithms.
    There currently are three algorithms, `MASK_1D`, `MASK_2D_GREEDY` and `MASK_2D_BEST`
    """
    MASK_1D = 'get_mask_1d'
    MASK_2D_GREEDY = 'get_mask_2d_greedy'
    MASK_2D_BEST = 'get_mask_2d_best'


class CheckMethod(Enum):
    r"""
    A collection of all sparsity checking approaches.
    There currently are two methods, `CHECK_1D` and `CHECK_2D`
    """
    CHECK_1D = 'check_mask_1d'
    CHECK_2D = 'check_mask_2d'

    @staticmethod
    def get_checking_method(mask_algo):
        r"""
        Get sparsity checking method by mask generating algorithm.

        Args:
            mask_algo (MaskAlgo): The algorithm of mask generating.
        Returns:
            CheckMethod: The corresponded sparsity checking method.
        Examples:
            .. code-block:: python

            import numpy as np
61
            from paddle.incubate.asp import CheckMethod, MaskAlgo
62 63 64 65 66 67 68 69 70 71

            CheckMethod.get_checking_method(MaskAlgo.MASK_1D)
            # CheckMethod.CHECK_1D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_GREEDY)
            # CheckMethod.CHECK_2D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_BEST)
            # CheckMethod.CHECK_2D
        """
72 73 74
        assert isinstance(
            mask_algo, MaskAlgo
        ), "mask_algo should be MaskAlgo type"
75 76 77 78 79 80
        if mask_algo == MaskAlgo.MASK_1D:
            return CheckMethod.CHECK_1D
        else:
            return CheckMethod.CHECK_2D


81
def calculate_density(x):
82
    r"""
U
ustiniankw 已提交
83

84 85 86 87
    Return the density of the input tensor.

    Args:
        x (nparray): The input tensor.
U
ustiniankw 已提交
88

89
    Returns:
U
ustiniankw 已提交
90 91
        float, The density of :attr:`x`.

92 93 94
    Examples:
        .. code-block:: python

U
ustiniankw 已提交
95 96 97 98
            import paddle
            import numpy as np

            x = np.array([[0, 1, 3, 0],
99
                        [1, 1, 0, 1]])
U
ustiniankw 已提交
100 101
            paddle.incubate.asp.calculate_density(x) # 0.625

102 103 104 105 106
    """
    x_flattened = x.flatten()
    return float(np.nonzero(x_flattened)[0].size) / x_flattened.size


107
def _reshape_1d(mat, m):
108
    r"""
109
    Reshape the input 2D matrix to shape (-1, m).
110
    If the second dimension of :attr:`mat` is not a multiples of :attr:`m`,
111 112 113 114 115 116 117
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder = mat.shape[1] % m

    Args:
118
        mat (nparray): The input 2D matrix.
119 120 121 122
        m (int): The second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
123 124
    assert len(mat.shape) == 2, "The input mat should be a 2D matrix!"

125 126 127
    remainder = mat.shape[1] % m
    if mat.shape[1] % m > 0:
        mat_padded = np.zeros((mat.shape[0], mat.shape[1] + (m - remainder)))
128
        mat_padded[:, : mat.shape[1]] = mat
129 130 131 132 133 134 135 136 137
        shape = mat_padded.shape
        return mat_padded.reshape(-1, m), shape
    else:
        return mat.reshape(-1, m), mat.shape


def check_mask_1d(mat, n, m):
    r"""
    Check if every row of the input matrix :attr:`mat` is in 1D `n:m` sparse pattern.
138
    This function would pad the second dimension of :attr:`mat` by zero
139 140 141 142 143 144 145 146 147 148 149 150 151 152
    to be a multiples of :attr:`m` if necessary.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if every row of :attr:`mat` is in 1D n:m sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
153
          import paddle.incubate.asp as sparsity
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

          x = np.array([[0, 1, 3, 0],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # True

          x = np.array([[0, 1, 5, 4],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # False

          # x would be padded to shape (2, 8)
          x = np.array([[0, 1, 0, 4, 6],
                        [1, 0, 0, 1, 7]])
          sparsity.check_mask_1d(x, 2, 4) # True
    """
    if len(mat.shape) <= 1:
169
        mat_flattern, shape = _reshape_1d(mat.reshape(1, mat.shape[0]), m)
170
    else:
171
        mat_flattern, shape = _reshape_1d(mat, m)
172 173 174 175 176 177 178 179 180

    for sub_mat in mat_flattern:
        if np.nonzero(sub_mat)[0].size > (m - n):
            return False
    return True


def get_mask_1d(mat, n, m):
    r"""
181 182
    Generate 1D `n:m` sparse pattern mask of the input matrix :attr:`mat`
    in row-directory. This function would pad the second dimension of :attr:`mat`
183 184 185 186 187 188 189 190 191 192 193 194 195 196
    by zero to be a multiples of :attr:`m` before mask generation.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
197
          import paddle.incubate.asp as sparsity
198 199 200 201 202 203 204 205

          mat = np.array([[0, 1, 5, 4],
                          [2, 7, 3, 6]])
          mask = sparsity.get_mask_1d(mat, 2, 4)
          # nparray([[0, 0, 1, 1],
          #          [0, 1, 0, 1]])
          sparsity.check_mask_1d(mask, 2, 4) # True
    """
206
    mat_flattern, shape = _reshape_1d(mat, m)
207 208 209 210 211 212 213 214

    mask_flattern = np.ones_like(mat_flattern)
    mask = np.ones_like(mat)
    for i in range(mat_flattern.shape[0]):
        sub_mat = mat_flattern[i]
        min_order_indices = np.argsort(np.absolute(sub_mat))
        mask_flattern[i, min_order_indices[:n].tolist()] = 0
    mask_flattern = mask_flattern.reshape(shape)
215
    mask[:, :] = mask_flattern[:, : mat.shape[1]]
216 217 218
    return mask


219
def _reshape_2d(mat, m):
220
    r"""
221
    Reshape the input 2D matrix to shape (-1, :math:`m \times m`).
222
    In each dimension of :attr:`mat`, if it is not a multiples of :attr:`m`,
223 224 225 226 227 228 229 230
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder_0 = mat.shape[0] % m \\
        remainder_1 = mat.shape[1] % m

    Args:
231
        mat (nparray): The input 2D matrix.
232 233 234 235
        m (int): The square root of second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
236 237
    assert len(mat.shape) == 2, "The input mat should be a 2D matrix!"

238 239 240
    remainder_0 = mat.shape[0] % m
    remainder_1 = mat.shape[1] % m

241 242 243 244
    new_shape = (
        mat.shape[0] if remainder_0 == 0 else mat.shape[0] + (m - remainder_0),
        mat.shape[1] if remainder_1 == 0 else mat.shape[1] + (m - remainder_1),
    )
245
    mat_padded = np.zeros(new_shape)
246
    mat_padded[: mat.shape[0], : mat.shape[1]] = mat
247 248 249 250 251 252 253

    mat_flattern = np.empty(new_shape).reshape(-1, m * m)
    curr_idx = 0
    for row_start in range(0, mat_padded.shape[0], m):
        row_end = row_start + m
        for col_start in range(0, mat_padded.shape[1], m):
            col_end = col_start + m
254 255 256
            sub_mat = np.squeeze(
                mat_padded[row_start:row_end, col_start:col_end].reshape(-1)
            )
257 258 259 260 261 262 263 264
            mat_flattern[curr_idx] = sub_mat
            curr_idx += 1
    return mat_flattern, mat_padded.shape


def check_mask_2d(mat, n, m):
    r"""
    Check if every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern.
265
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of
266 267
    :attr:`m` if necessary.

268
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
269 270 271 272 273 274 275 276 277 278 279 280
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if  every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
281
          import paddle.incubate.asp as sparsity
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

          x = np.array([[0, 8, 9, 0],
                        [9, 0, 0, 10],
                        [5, 0, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # True

          x = np.array([[0, 8, 0, 9],
                        [9, 0, 0, 10],
                        [0, 5, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # False

          # x would be padded to shape (8, 8)
          x = np.array([[0, 8, 0, 9],
                        [9, 0, 7, 0],
                        [0, 5, 0, 6],
                        [3, 0, 6, 0],
                        [1, 1, 0, 1]])
          sparsity.check_mask_2d(x, 2, 4) # True
    """
303
    mat_padded, shape = _reshape_2d(mat, m)
304 305
    for sub_mat in mat_padded:
        sub_mask = np.absolute(np.squeeze(sub_mat.reshape(m, m))) > 0
306 307 308
        if (np.sum(np.sum(sub_mask, axis=1) > (m - n)) != 0) and (
            np.sum(np.sum(sub_mask, axis=0) > (m - n)) != 0
        ):
309 310 311 312 313 314
            return False
    return True


def get_mask_2d_greedy(mat, n, m):
    r"""
315
    Greedily generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat`.
316 317
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

318
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
319 320 321 322 323 324 325 326 327 328 329 330 331
    under the constraint of at least :attr:`n` zeros for each row and column.
    Greedily generating: For each :math:`m \times m` block, selecting values to keep in descent order.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 2D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
332
          import paddle.incubate.asp as sparsity
333 334 335 336 337 338 339 340 341 342 343 344

          mat = np.array([[9, 8, 3, 7],
                          [9, 2, 1, 10],
                          [5, 1, 3, 6],
                          [2, 4, 6, 1]])
          mask = sparsity.get_mask_2d_greedy(mat, 2, 4)
          # nparray([[1. 1. 0. 0.]
          #          [1. 0. 0. 1.]
          #          [0. 0. 1. 1.]
          #          [0. 1. 1. 0.]])
          sparsity.check_mask_2d(mask, 2, 4) # True
    """
345
    mat_padded, shape = _reshape_2d(mat, m)
346 347 348 349 350 351 352
    mask_padded = np.zeros_like(mat_padded).reshape(-1, m, m)

    for idx in range(len(mat_padded)):
        sub_mat = np.absolute(np.squeeze(mat_padded[idx]))
        sub_mask = np.squeeze(mask_padded[idx])

        min_order_1d_indices = np.argsort(sub_mat)
353 354 355
        min_order_2d_indices = [
            (int(x / m), x % m) for x in min_order_1d_indices
        ]
356 357 358 359 360
        row_counter = collections.Counter()
        col_counter = collections.Counter()

        for i in range(len(min_order_1d_indices) - 1, -1, -1):
            matrix_entry = min_order_2d_indices[i]
361 362 363
            if (row_counter[matrix_entry[0]] == n) or (
                col_counter[matrix_entry[1]] == n
            ):
364 365 366 367 368 369 370 371 372 373 374 375 376 377
                continue

            sub_mask[matrix_entry[0], matrix_entry[1]] = 1.0
            row_counter[matrix_entry[0]] += 1
            col_counter[matrix_entry[1]] += 1

    mask = np.empty(shape)
    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_padded[curr_idx]
            curr_idx += 1
378
    return mask[: mat.shape[0], : mat.shape[1]]
379 380


381 382
_valid_2d_patterns_lock = threading.Lock()
_valid_2d_patterns = {}
383 384


385
def _compute_valid_2d_patterns(n, m):
386 387 388
    r"""
    Compute all vaild 2D `n:m` sparse patterns.

389
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
390 391 392 393 394 395 396 397
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        dictionary: A dictionary with key: *m_n* (string) and value: all vaild 2D `n:m` sparse patterns.
    """
398 399
    global _valid_2d_patterns_lock
    global _valid_2d_patterns
400 401

    valid_key = '{}_{}'.format(m, n)
402 403
    if valid_key in _valid_2d_patterns:
        return _valid_2d_patterns[valid_key]
404 405 406 407 408 409 410
    else:
        patterns = np.zeros(m)
        patterns[:n] = 1
        patterns = list(set(permutations(patterns.tolist())))
        patterns = patterns + patterns
        patterns = np.asarray(list(set(permutations(patterns, m))))

411 412 413 414 415
        valid = (
            ((patterns.sum(axis=1) <= n).sum(axis=1) == m)
            .nonzero()[0]
            .reshape(-1)
        )
416 417 418
        valid_patterns = np.empty((valid.shape[0], m, m))
        valid_patterns[:] = patterns[valid[:]]

419 420 421
        _valid_2d_patterns_lock.acquire()
        _valid_2d_patterns[valid_key] = valid_patterns
        _valid_2d_patterns_lock.release()
422 423 424 425 426 427

        return valid_patterns


def get_mask_2d_best(mat, n, m):
    r"""
428 429
    Generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat`
    to form sparse matrix with maximun L1 norm .This function would pad each
430 431
    dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

432
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
433 434 435 436 437 438 439 440 441 442 443 444 445 446
    under the constraint of at least :attr:`n` zeros for each row and column.

    *Note*: L1 norm of sparse matrix from `Best` API is greater than or equal to the one from `Greedy`.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
447
          import paddle.incubate.asp as sparsity
448 449 450 451 452 453

          mat = np.array([[2, 8, 9, 9],
                          [9, 1, 3, 9],
                          [5, 6, 3, 9],
                          [2, 4, 6, 9]])
          mask_greedy = sparsity.get_mask_2d_greedy(mat, 2, 4)
454
          mask_best = sparsity.get_mask_2d_best(mat, 2, 4)
455 456 457
          print("L1 norm of `greedy` sparse matrix", np.multiply(mat, mask_greedy).sum()) # 56
          print("L1 norm of `best` sparse matrix", np.multiply(mat, mask_best).sum()) # 61
    """
458
    patterns = _compute_valid_2d_patterns(n, m)
459

460
    mat_flattern, shape = _reshape_2d(mat, m)
461
    mask_flattern = np.ones_like(mat_flattern).reshape(-1, m, m)
462 463 464 465
    pmax = np.argmax(
        np.matmul(mat_flattern, patterns.reshape(patterns.shape[0], m * m).T),
        axis=1,
    )
466 467 468 469 470 471 472 473 474 475 476

    mask_flattern[:] = patterns[pmax[:]]
    mask = np.empty(shape)

    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_flattern[curr_idx]
            curr_idx += 1
477
    return mask[: mat.shape[0], : mat.shape[1]]
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495


def create_mask(tensor, func_name=MaskAlgo.MASK_1D, n=2, m=4):
    r"""
    Create `n:m` sparse pattern mask of the input tensor via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (MaskAlgo, optional): The function name to generate spase mask. Default is `MaskAlgo.MASK_1D`. All options please refer to `MaskAlgo`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        nparray: The `n:m` sparse mask of :attr:`tensor` generated by :attr:`func_name`.
    Examples:
        .. code-block:: python

          import numpy as np
496
          import paddle.incubate.asp as sparsity
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          mask_2d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_2D_BEST)
          # nparray([[0 1 1 0],
          #          [1 0 0 1],
          #          [1 1 0 0],
          #          [0 0 1 1]])
    """
    shape = tensor.shape
    dtype = tensor.dtype
    t = tensor.astype(float)

517 518 519 520
    assert isinstance(func_name, MaskAlgo), (
        "func_name argumet of create_mask is only accepted as type MaskAlgo. "
        "But got {}".format(type(func_name))
    )
521 522 523 524 525 526 527
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
528
    # 4d-tensor conv (h, w, in, out) -> (h*w*out, in) in GemmConvKernel Op
529
    elif len(shape) == 4:
530 531 532
        t = t.transpose([0, 1, 3, 2]).reshape(
            shape[0] * shape[1] * shape[3], shape[2]
        )
533
        mask = func(t, n=n, m=m)
534 535 536 537 538
        return (
            mask.reshape([shape[0], shape[1], shape[3], shape[2]])
            .transpose([0, 1, 3, 2])
            .astype(dtype)
        )
539
    else:
540 541 542 543
        raise ValueError(
            "The dimension of input tensor is not supported in create_mask, "
            "Only dimension < 4 is supported but got {}".format(len(shape))
        )
544 545 546

    mask = func(t, n=n, m=m)
    return mask.reshape(shape).astype(dtype)
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564


def check_sparsity(tensor, func_name=CheckMethod.CHECK_1D, n=2, m=4):
    r"""
    Check if input tensor is in `n:m` sparse pattern via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (CheckMethod, optional): The function name to generate spase mask. Default is `CheckMethod.CHECK_1D`. All options please refer to `CheckMethod`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        bool: True if tensor pass checking of function given by :attr:`func_name`, else False.
    Examples:
        .. code-block:: python

          import numpy as np
565
          import paddle.incubate.asp as sparsity
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_1D) # True
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_2D) # False
    """
    shape = tensor.shape
    t = tensor.astype(float)

582 583 584 585
    assert type(func_name) == CheckMethod, (
        "func_name argumet of check_sparsity is only accepted as type CheckMethod. "
        "But got {}".format(type(func_name))
    )
586 587 588 589 590 591 592
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
593
    # 4d-tensor conv (h, w, in, out) -> (h*w*out, in) in GemmConvKernel Op
594
    elif len(shape) == 4:
595 596 597
        t = t.transpose([0, 1, 3, 2]).reshape(
            [shape[0] * shape[1] * shape[3], shape[2]]
        )
598
    else:
599 600 601 602
        raise ValueError(
            "The dimension of input tensor is not supported in create_mask, "
            "Only dimension < 4 is supported but got {}".format(len(shape))
        )
603

604
    return func(t, n=n, m=m)