data_feeder.py 6.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16 17 18
from __future__ import print_function
import core
import numpy
import six.moves as six
Y
yuyang18 已提交
19
import multiprocessing
Y
Yu Yang 已提交
20

F
fengjiayi 已提交
21
from framework import Variable, default_main_program
Y
Yu Yang 已提交
22 23 24 25 26 27 28 29 30

__all__ = ['DataFeeder']


class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
31
        if dtype == core.VarDesc.VarType.FP32:
Y
Yu Yang 已提交
32
            self.dtype = 'float32'
33
        elif dtype == core.VarDesc.VarType.INT64:
Y
Yu Yang 已提交
34
            self.dtype = 'int64'
35
        elif dtype == core.VarDesc.VarType.FP64:
Y
Yu Yang 已提交
36
            self.dtype = 'float64'
37
        elif dtype == core.VarDesc.VarType.INT32:
Y
Yu Yang 已提交
38
            self.dtype = 'int32'
F
fengjiayi 已提交
39 40
        elif dtype == core.VarDesc.VarType.UINT8:
            self.dtype = 'uint8'
Y
Yu Yang 已提交
41 42
        else:
            raise ValueError("dtype must be any of [int32, float32, int64, "
F
fengjiayi 已提交
43
                             "float64, uint8]")
Y
Yu Yang 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

        self.data = []
        self.lod = []

        for i in six.range(lod_level):
            self.lod.append([0])

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
            cur_lod_len = len(data)
K
Kexin Zhao 已提交
59
            lod[0].append(lod[0][-1] + cur_lod_len)
Y
Yu Yang 已提交
60
            for each_data in data:
K
Kexin Zhao 已提交
61
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
62 63 64 65 66 67 68 69 70 71 72

    def done(self):
        arr = numpy.array(self.data, dtype=self.dtype).reshape(self.shape)
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
            t.set_lod(self.lod)
        return t


class DataFeeder(object):
F
fengjiayi 已提交
73
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
74 75 76 77
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
78 79
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
80
        for each_var in feed_list:
F
fengjiayi 已提交
81 82
            if isinstance(each_var, basestring):
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            shape = each_var.shape
            batch_size_dim = -1
            for i, s in enumerate(shape):
                if s < 0:
                    batch_size_dim = i
                    break
            if batch_size_dim == -1:
                raise ValueError("Variable {0} must has a batch size dimension",
                                 each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
            self.feed_shapes.append(shape)

        self.place = place

    def feed(self, iterable):
        converter = []
        for lod_level, shape, dtype in six.zip(
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
113 114 115
            assert len(each_sample) == len(converter), (
                "The number of fields in data (%s) does not match " +
                "len(feed_list) (%s)") % (len(each_sample), len(converter))
Y
Yu Yang 已提交
116 117 118 119 120 121
            for each_converter, each_slot in six.zip(converter, each_sample):
                each_converter.feed(each_slot)
        ret_dict = {}
        for each_name, each_converter in six.zip(self.feed_names, converter):
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    def feed_parallel(self, iterable, num_places=None):
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
                for i in six.xrange(self._get_number_of_places_(num_places))
            ]
        else:
            places = [
                core.CPUPlace()
                for _ in six.xrange(self._get_number_of_places_(num_places))
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
        for p, batch in six.zip(places, iterable):
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
            return core.get_cuda_device_count()
        else:
            return multiprocessing.cpu_count()

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__