fusion_lstm_op.cc 23.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_lstm_op.h"
16

T
tensor-tang 已提交
17
#include <string>
18

19
#include "paddle/phi/kernels/funcs/blas/blas.h"
20
#include "paddle/phi/kernels/funcs/fc_functor.h"
21
#include "paddle/phi/kernels/funcs/jit/kernels.h"
F
Feiyu Chan 已提交
22
#include "paddle/phi/kernels/funcs/sequence2batch.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25 26 27
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
28 29 30 31 32 33 34
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasOutput("Cell"), "Output", "Cell", "fusion_lstm");
T
tensor-tang 已提交
35

T
tensor-tang 已提交
36
  auto x_dims = ctx->GetInputDim("X");
37 38
  PADDLE_ENFORCE_EQ(x_dims.size(),
                    2,
39 40 41
                    platform::errors::InvalidArgument(
                        "Input(X)'s rank must be 2, but received x's rank "
                        "is:%d, x dim is:[%s]",
42 43
                        x_dims.size(),
                        x_dims));
T
tensor-tang 已提交
44

45
  if (ctx->HasInput("H0")) {
46
    OP_INOUT_CHECK(ctx->HasInput("C0"), "Input", "C0", "fusion_lstm");
T
tensor-tang 已提交
47 48
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
49 50
    PADDLE_ENFORCE_EQ(h_dims,
                      c_dims,
51 52 53
                      platform::errors::InvalidArgument(
                          "The dimension of Input(H0) and Input(C0) should be "
                          "same, but received h0 dims is:[%s], c0 dims is:[%s]",
54 55
                          h_dims,
                          c_dims));
T
tensor-tang 已提交
56 57
  }

T
tensor-tang 已提交
58
  auto wx_dims = ctx->GetInputDim("WeightX");
59 60
  PADDLE_ENFORCE_EQ(wx_dims.size(),
                    2,
61 62 63
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX's rank is:%d, WeightX dim is:[%s]",
64 65 66 67
                        wx_dims.size(),
                        wx_dims));
  PADDLE_ENFORCE_EQ(wx_dims[0],
                    x_dims[1],
68 69 70 71
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(WeightX) "
                        "should equal to second dimension of Input(X), but "
                        "received WeightX first dim is:%d, X second dim is:%d",
72 73
                        wx_dims[0],
                        x_dims[1]));
T
tensor-tang 已提交
74 75 76

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
77

78 79
  PADDLE_ENFORCE_EQ(wh_dims.size(),
                    2,
80 81 82
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH rank is:%d, WeightH dim is:[%s]",
83 84 85 86
                        wh_dims.size(),
                        wh_dims));
  PADDLE_ENFORCE_EQ(wh_dims[0],
                    frame_size,
87 88 89 90
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(WeightH) "
                        "should equal to frame size, but received WeightH "
                        "first dim is:%d, frame size is:%d.",
91 92
                        wh_dims[0],
                        frame_size));
93

94 95
  PADDLE_ENFORCE_EQ(wh_dims[1],
                    4 * frame_size,
96 97 98 99
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 4 * frame_size, but received WeightH "
                        "second dimension is:%d, frame size is:%d.",
100 101
                        wh_dims[1],
                        frame_size));
T
tensor-tang 已提交
102 103

  auto b_dims = ctx->GetInputDim("Bias");
104 105
  PADDLE_ENFORCE_EQ(b_dims.size(),
                    2,
106 107 108
                    platform::errors::InvalidArgument(
                        "The rank of Input(Bias) should be 2, but received "
                        "Bias rank is:%d, Bias dim is:[%s]",
109 110 111 112
                        b_dims.size(),
                        b_dims));
  PADDLE_ENFORCE_EQ(b_dims[0],
                    1,
113 114 115 116 117
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(Bias) should be 1, but "
                        "received Bias's dimension is:[%s]",
                        b_dims));

T
tensor-tang 已提交
118
  if (ctx->Attrs().Get<bool>("use_peepholes")) {
119 120
    PADDLE_ENFORCE_EQ(b_dims[1],
                      7 * frame_size,
121 122 123 124
                      platform::errors::InvalidArgument(
                          "The second dimension of Input(Bias) should be "
                          "7 * %d if enable peepholes connection, but received "
                          "Bias dim is:[%s]",
125 126
                          frame_size,
                          b_dims));
T
tensor-tang 已提交
127 128
    ctx->SetOutputDim("CheckedCell", {2, frame_size});
  } else {
129
    PADDLE_ENFORCE_EQ(
130 131
        b_dims[1],
        4 * frame_size,
132 133 134
        platform::errors::InvalidArgument(
            "The second dimension of Input(Bias) should be "
            "4 * %d if disable peepholes, but received Bias dim is:[%s]",
135 136
            frame_size,
            b_dims));
T
tensor-tang 已提交
137
  }
T
tensor-tang 已提交
138

T
tensor-tang 已提交
139
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
140 141
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
142 143
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
144
  int xx_width;
T
tensor-tang 已提交
145
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
146 147 148
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
149

150 151 152
    OP_INOUT_CHECK(ctx->HasOutput("BatchedInput"),
                   "Output",
                   "BatchedInput",
153
                   "fusion_lstm");
154 155 156
    OP_INOUT_CHECK(ctx->HasOutput("BatchedHidden"),
                   "Output",
                   "BatchedHidden",
157
                   "fusion_lstm");
158 159 160 161 162 163
    OP_INOUT_CHECK(
        ctx->HasOutput("BatchedCell"), "Output", "BatchedCell", "fusion_lstm");
    OP_INOUT_CHECK(
        ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0", "fusion_lstm");
    OP_INOUT_CHECK(
        ctx->HasOutput("ReorderedC0"), "Output", "ReorderedC0", "fusion_lstm");
164

T
tensor-tang 已提交
165 166 167
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
168
  }
T
tensor-tang 已提交
169 170
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
171 172
}

173
phi::KernelKey FusionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
174
    const framework::ExecutionContext& ctx) const {
175
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
176
  return phi::KernelKey(data_type, ctx.GetPlace());
T
tensor-tang 已提交
177 178 179
}

void FusionLSTMOpMaker::Make() {
180 181 182 183 184 185
  AddInput(
      "X",
      "(phi::DenseTensor) the input is a LodTensor, which support "
      "variable-time length input sequence. The underlying tensor in "
      "this phi::DenseTensor is a matrix with shape (T X M), where T is the "
      "total time steps in this mini-batch, M is the dim size of x.");
T
tensor-tang 已提交
186
  AddInput("WeightX",
187
           "(phi::DenseTensor) the learnable weights of X."
T
tensor-tang 已提交
188 189 190
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
191 192 193 194 195
  AddInput(
      "WeightH",
      "(phi::DenseTensor) same as LSTMOp, the learnable hidden-hidden weights."
      " - The shape is (D x 4D), where D is the hidden size. "
      " - Weight = {W_ch, W_ih, W_fh, W_oh}");
T
tensor-tang 已提交
196
  AddInput("Bias",
197
           "(phi::DenseTensor) the learnable weights. Almost same as LSTMOp"
T
tensor-tang 已提交
198
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
199 200 201 202 203 204 205 206
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
207
  AddInput("H0",
208 209
           "(phi::DenseTensor, optional) (same as LSTMOp) the initial hidden "
           "state is an "
T
tensor-tang 已提交
210 211 212 213 214
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
215 216
           "(phi::DenseTensor, optional) (same as LSTMOp) (the initial cell "
           "state is an "
T
tensor-tang 已提交
217 218 219 220
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
221 222 223 224 225 226 227 228
  AddOutput(
      "Hidden",
      "(phi::DenseTensor) (same as LSTMOp) the hidden state of LSTM operator. "
      "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput(
      "Cell",
      "(phi::DenseTensor) (same as LSTMOp) the cell state of LSTM operator. "
      "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
229
  AddOutput("XX",
230
            "(phi::DenseTensor) the result after X * WeightX (size is T x 4D)"
T
tensor-tang 已提交
231 232
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
233 234
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
235 236 237 238 239
  AddOutput("BatchedInput", "(phi::DenseTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(phi::DenseTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(phi::DenseTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(phi::DenseTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(phi::DenseTensor) (N x D).").AsIntermediate();
240
  AddOutput("CheckedCell", "(phi::DenseTensor) (2 x D) only for peephole.")
T
tensor-tang 已提交
241
      .AsIntermediate();
T
tensor-tang 已提交
242
  AddAttr<bool>("use_peepholes",
翟飞跃 已提交
243
                "(bool, default: True) "
T
tensor-tang 已提交
244 245 246
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
247
                "(bool, default: False) "
T
tensor-tang 已提交
248 249
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
250
  AddAttr<bool>("use_seq",
翟飞跃 已提交
251
                "(bool, default: True) "
T
tensor-tang 已提交
252 253
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
254 255 256 257 258 259 260 261
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
翟飞跃 已提交
262
                       "The activation for cell output, `tanh` by default.")
T
tensor-tang 已提交
263 264 265 266 267 268 269 270
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
271 272 273
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
274 275 276 277 278
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
279 280 281 282 283 284 285 286 287 288 289 290
  AddAttr<float>("Scale_data",
                 "Scale to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Shift_data",
                 "Shift to be used for int8 input/output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(0.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
291 292 293 294
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
T
tensor-tang 已提交
295
  AddComment(R"DOC(
T
tensor-tang 已提交
296 297
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
298 299 300
)DOC");
}

T
tensor-tang 已提交
301
template <typename T>
T
tensor-tang 已提交
302
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
303
 public:
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
#define INIT_BASE_DEFINES                                    \
  using DeviceContext = phi::CPUContext;                     \
  auto* x = ctx.Input<phi::DenseTensor>("X");                \
  auto* h0 = ctx.Input<phi::DenseTensor>("H0");              \
  auto* c0 = ctx.Input<phi::DenseTensor>("C0");              \
  auto* wx = ctx.Input<phi::DenseTensor>("WeightX");         \
  auto* wh = ctx.Input<phi::DenseTensor>("WeightH");         \
  auto* bias = ctx.Input<phi::DenseTensor>("Bias");          \
  auto* xx = ctx.Output<phi::DenseTensor>("XX");             \
  auto* hidden_out = ctx.Output<phi::DenseTensor>("Hidden"); \
  auto* cell_out = ctx.Output<phi::DenseTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");            \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");      \
  auto x_dims = x->dims();   /* T x M*/                      \
  auto wh_dims = wh->dims(); /* D x 4D*/                     \
  const int M = x_dims[1];                                   \
  const int D = wh_dims[0];                                  \
321 322
  const int D4 = wh_dims[1]

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
#define INIT_OTHER_DEFINES                                                    \
  const T* x_data = x->data<T>();                                             \
  const T* wx_data = wx->data<T>();                                           \
  const T* wh_data = wh->data<T>();                                           \
  /* diagonal weight*/                                                        \
  const T* wp_data = bias->data<T>() + D4;                                    \
  /* for peephole only*/                                                      \
  T* checked_cell_data = nullptr;                                             \
  auto place = ctx.GetPlace();                                                \
  if (use_peepholes) {                                                        \
    /* w_ic * Ct-1, w_fc * Ct-1  ; w_oc * Ct => ih*/                          \
    auto* checked_cell = ctx.Output<phi::DenseTensor>("CheckedCell");         \
    checked_cell_data = checked_cell->mutable_data<T>(place);                 \
  }                                                                           \
  const phi::jit::lstm_attr_t attr(                                           \
      D,                                                                      \
      phi::jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),      \
      phi::jit::to_kerneltype(ctx.Attr<std::string>("candidate_activation")), \
      phi::jit::to_kerneltype(ctx.Attr<std::string>("cell_activation")),      \
      use_peepholes);                                                         \
  phi::jit::lstm_t one_step;                                                  \
  one_step.wp = wp_data;                                                      \
  one_step.checked = checked_cell_data;                                       \
  auto ComputeC1H1 = phi::jit::KernelFuncs<phi::jit::LSTMC1H1Tuple<T>,        \
                                           platform::CPUPlace>::Cache()       \
                         .At(attr);                                           \
  auto ComputeCtHt = phi::jit::KernelFuncs<phi::jit::LSTMCtHtTuple<T>,        \
                                           platform::CPUPlace>::Cache()       \
                         .At(attr)
352 353

// Wh GEMM
354 355 356 357 358 359 360 361 362 363 364 365 366 367
#define GEMM_WH_ADDON(bs, prev, out) \
  blas.GEMM(CblasNoTrans,            \
            CblasNoTrans,            \
            bs,                      \
            D4,                      \
            D,                       \
            static_cast<T>(1),       \
            prev,                    \
            D,                       \
            wh_data,                 \
            D4,                      \
            static_cast<T>(1),       \
            out,                     \
            D4)
T
tensor-tang 已提交
368

T
tensor-tang 已提交
369
  void SeqCompute(const framework::ExecutionContext& ctx) const {
370 371
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
372
    auto x_lod = x->lod();
T
tensor-tang 已提交
373
    const int total_T = x_dims[0];
T
tensor-tang 已提交
374
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
375 376
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
377
    T* xx_data = xx->mutable_data<T>(place);
T
tensor-tang 已提交
378 379
    T* h_out_data = hidden_out->mutable_data<T>(place);
    T* c_out_data = cell_out->mutable_data<T>(place);
380
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
381 382

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
383
    phi::funcs::FCFunctor<DeviceContext, T> fc;
384
    fc(dev_ctx, total_T, D4, M, x_data, wx_data, xx_data, bias->data<T>());
B
Brian Liu 已提交
385

T
tensor-tang 已提交
386 387 388 389 390
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
T
tensor-tang 已提交
391 392
      h_out_data = h_out_data + offset;
      c_out_data = c_out_data + offset;
T
tensor-tang 已提交
393 394 395 396
      xx_offset = -D4;
      gate_offset = -D;
    }

397 398 399 400 401 402 403 404 405 406
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
      const T* prev_c_data = nullptr;
      const T* prev_h_data = nullptr;
      int tstart = 0;
      if (h0_data) {
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
      } else {
407 408 409
        one_step.gates = xx_data;
        one_step.ct = c_out_data;
        one_step.ht = h_out_data;
410
        ComputeC1H1(&one_step, &attr);
411 412 413 414 415 416 417
        tstart = 1;
        // move one step
        prev_h_data = h_out_data;
        prev_c_data = c_out_data;
        xx_data = xx_data + xx_offset;
        h_out_data = h_out_data + gate_offset;
        c_out_data = c_out_data + gate_offset;
T
tensor-tang 已提交
418
      }
419 420
      for (int step = tstart; step < seq_len; ++step) {
        GEMM_WH_ADDON(1, prev_h_data, xx_data);
421 422 423 424 425

        one_step.gates = xx_data;
        one_step.ct_1 = prev_c_data;
        one_step.ct = c_out_data;
        one_step.ht = h_out_data;
426
        ComputeCtHt(&one_step, &attr);
427 428 429 430 431 432
        // move one step
        prev_h_data = h_out_data;
        prev_c_data = c_out_data;
        xx_data = xx_data + xx_offset;
        h_out_data = h_out_data + gate_offset;
        c_out_data = c_out_data + gate_offset;
T
tensor-tang 已提交
433
      }
T
tensor-tang 已提交
434
    }
T
tensor-tang 已提交
435 436 437
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
438
    INIT_BASE_DEFINES;
T
tensor-tang 已提交
439
    if (x->lod()[0].size() == 2) {
440
      xx->Resize({x_dims[0], D4});
T
tensor-tang 已提交
441
      SeqCompute(ctx);
T
tensor-tang 已提交
442
      return;
T
tensor-tang 已提交
443
    }
444
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
445

446 447
    auto* reordered_h0 = ctx.Output<phi::DenseTensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<phi::DenseTensor>("ReorderedC0");
448 449 450
    auto* batched_input = ctx.Output<phi::DenseTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<phi::DenseTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<phi::DenseTensor>("BatchedHidden");
T
tensor-tang 已提交
451 452 453 454 455 456
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
457

F
Feiyu Chan 已提交
458
    phi::funcs::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
459
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
460
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
461
    phi::funcs::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
462
    if (M > D4) {
463
      fc(dev_ctx, x_dims[0], D4, M, x_data, wx_data, xx_data, bias->data<T>());
T
tensor-tang 已提交
464
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
465 466
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
467
      batched_input->set_lod(xx->lod());
468 469 470 471 472 473 474
      fc(dev_ctx,
         x_dims[0],
         D4,
         M,
         xx_data,
         wx_data,
         batched_input_data,
475
         bias->data<T>());
T
tensor-tang 已提交
476 477
    }

T
tensor-tang 已提交
478 479 480 481 482 483 484
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
485 486
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
487 488 489 490 491 492
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
T
tensor-tang 已提交
493 494
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
495
      size_t sz = D;
T
tensor-tang 已提交
496
      for (int i = 0; i < max_bs; ++i) {
497 498
        blas.VCOPY(sz, h0_data + seq_order[i] * D, reordered_h0_data);
        blas.VCOPY(sz, c0_data + seq_order[i] * D, reordered_c0_data);
T
tensor-tang 已提交
499 500 501 502
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
T
tensor-tang 已提交
503 504 505 506 507
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      for (int i = 0; i < max_bs; ++i) {
508 509 510
        one_step.gates = cur_in_data;
        one_step.ct = cur_c_out_data;
        one_step.ht = cur_h_out_data;
511
        ComputeC1H1(&one_step, &attr);
512

T
tensor-tang 已提交
513 514 515 516 517
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
T
tensor-tang 已提交
518 519
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
520
    }
521 522

    // compute kernel part
T
tensor-tang 已提交
523 524
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
525 526 527 528
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;
529 530 531 532 533 534 535 536
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
      T* cur_in_data = batched_input_data;
      T* cur_prev_c_data = prev_c_data;
      T* cur_c_out_data = batched_c_out_data;
      T* cur_h_out_data = batched_h_out_data;
      for (int i = 0; i < cur_bs; ++i) {
537 538 539 540
        one_step.gates = cur_in_data;
        one_step.ct_1 = cur_prev_c_data;
        one_step.ct = cur_c_out_data;
        one_step.ht = cur_h_out_data;
T
tensor-tang 已提交
541
        ComputeCtHt(&one_step, &attr);
542

543 544 545 546 547
        // move one batch
        cur_in_data += D4;
        cur_prev_c_data += D;
        cur_c_out_data += D;
        cur_h_out_data += D;
T
tensor-tang 已提交
548
      }
549 550 551 552 553 554
      // move one step
      prev_c_data = batched_c_out_data;
      prev_h_data = batched_h_out_data;
      batched_c_out_data = cur_c_out_data;
      batched_h_out_data = cur_h_out_data;
      batched_input_data = cur_in_data;
T
tensor-tang 已提交
555 556
    }

F
Feiyu Chan 已提交
557
    phi::funcs::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
558 559 560 561
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
562
  }
T
tensor-tang 已提交
563

T
tensor-tang 已提交
564
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
565
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
566 567 568 569 570
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
571 572

#undef GEMM_WH_ADDON
573 574
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
575 576 577 578 579 580
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
581
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker);
T
tensor-tang 已提交
582

583 584
REGISTER_OP_CPU_KERNEL(fusion_lstm,
                       ops::FuisonLSTMKernel<float>,
T
tensor-tang 已提交
585
                       ops::FuisonLSTMKernel<double>);