interpolate_op.cc 9.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/interpolate_op.h"
S
sneaxiy 已提交
13
#include <memory>
14
#include <string>
15 16 17 18 19 20 21 22
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

23
class InterpolateOp : public framework::OperatorWithKernel {
24 25 26 27 28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
30
                   "Input(X) of InterpolateOp should not be null.");
31
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
32 33 34 35 36 37
                   "Output(Out) of InterpolationOp should not be null.");

    auto interp_method = ctx->Attrs().Get<std::string>("interp_method");
    PADDLE_ENFORCE(
        "bilinear" == interp_method || "nearest" == interp_method,
        "Interpolation method can only be \"bilinear\" or \"nearest\".");
38 39 40 41

    auto dim_x = ctx->GetInputDim("X");  // NCHW format
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");

D
dengkaipeng 已提交
42 43 44
    int out_h, out_w;
    float scale = ctx->Attrs().Get<float>("scale");
    if (scale > 0) {
D
dengkaipeng 已提交
45 46 47
      // round down
      out_h = static_cast<int>(dim_x[2] * scale);
      out_w = static_cast<int>(dim_x[3] * scale);
D
dengkaipeng 已提交
48 49 50 51 52
    } else {
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }

53
    if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
54 55 56 57
      auto out_size_dim = ctx->GetInputDim("OutSize");
      PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
                        "OutSize's dimension size must be 1");
      PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
58 59
      ctx->ShareLoD("X", "Out");
      return;
60
    }
61 62 63 64 65 66 67

    if (ctx->IsRuntime() || (out_h > 0 && out_w > 0)) {
      std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
      ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
    } else {
      ctx->SetOutputDim("Out", dim_x);
    }
68 69 70 71 72
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
73 74
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
75 76 77
  }
};

78
class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
79 80 81
 public:
  void Make() override {
    AddInput("X",
82 83
             "The input tensor of interpolate operator, "
             "This is a 4-D tensor with shape of [N,  C, H, w].");
84
    AddInput("OutSize",
85
             "This is a 1-D tensor with two numbers to specify output size. "
86 87
             "The first number is height and the second number is width.")
        .AsDispensable();
88 89 90
    AddOutput("Out",
              "The output tensor of interpolate operator, "
              "This is a 4-D tensor with shape of [N, C, H, W].");
91

92 93
    AddAttr<int>("out_h", "output height of interpolate op.");
    AddAttr<int>("out_w", "output width of interpolate op.");
D
dengkaipeng 已提交
94
    AddAttr<float>("scale", "scale factor of interpolate op.").SetDefault(0.);
95 96 97 98 99 100
    AddAttr<std::string>("interp_method",
                         "(string, default \"bilinear\"), interpolation "
                         "method, can be \"bilinear\" for "
                         "bilinear interpolation and \"nearest\" for nearest "
                         "neighbor interpolation.")
        .SetDefault("bilinear");
101 102
    AddAttr<bool>(
        "align_corners",
T
Tink_Y 已提交
103
        "an optional bool. Defaults to True. "
104 105
        "If True, the centers of 4 corner pixels of the input and output "
        "tensors are aligned, preserving the values at the corner pixels, "
T
Tink_Y 已提交
106
        "If False, are not aligned")
107 108
        .SetDefault(true);
    AddAttr<int>("align_mode",
T
Tink_Y 已提交
109
                 "(int, default \'1\'), optional for bilinear interpolation, "
T
tink2123 已提交
110 111
                 "can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , "
                 "can be \'1\' for src_idx = scale*dst_index .")
T
tink2123 已提交
112
        .SetDefault(1);
113
    AddComment(R"DOC(
114 115 116 117 118
          This operator samples input X to given output shape by using specified
          interpolation method, the interpolation methods can be \"nearest\"
          for nearest neighbor interpolation and \"bilinear\" for bilinear 
          interpolation.

119
          Nearest neighbor interpolation is to perform nearest neighbor interpolation
120
          in both the 3rd dimention(in height direction) and the 4th dimention(in width 
121 122
          direction) on input tensor.
            
123 124 125 126 127 128
          Bilinear interpolation is an extension of linear interpolation for 
          interpolating functions of two variables (e.g. H-direction and 
          W-direction in this op) on a rectilinear 2D grid. The key idea is 
          to perform linear interpolation first in one direction, and then 
          again in the other direction.

T
tink2123 已提交
129
          Align_corners and align_mode are optinal parameters,the calculation method 
130 131 132 133
          of interpolation can be selected by them.
          
          Example:

T
tink2123 已提交
134
          For scale:
135 136 137 138 139 140 141 142 143 144 145 146
          
            if align_corners = True and out_{size}>1 :

              scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
            
            else:
              
              scale_{factor} = float(in_{size}/out_{size})
            
          
          Nearest neighbor interpolation:
          
T
tink2123 已提交
147
          if:
148 149 150 151 152 153 154 155
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
              W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
156
          else:
157 158 159 160 161 162 163 164 165 166
              align_corners = True

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})

          Bilinear interpolation:

T
tink2123 已提交
167
          if:
168 169 170 171 172 173 174 175 176
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
177
          else:
178 179 180 181 182 183 184 185 186
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

          

187
          For details of nearest neighbor interpolation, please refer to Wikipedia: 
188
          https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
189 190 191

          For details of bilinear interpolation, please refer to Wikipedia: 
          https://en.wikipedia.org/wiki/Bilinear_interpolation
192 193 194 195
         )DOC");
  }
};

196
class InterpolateOpGrad : public framework::OperatorWithKernel {
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
213 214 215
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
        ctx.GetPlace());
216 217 218
  }
};

S
sneaxiy 已提交
219 220 221 222 223 224 225 226 227
class InterpolateGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOp().Type() + "_grad");
    op->SetInput("X", Input("X"));
S
sneaxiy 已提交
228 229 230
    if (ForwardOp().Inputs().count("OutSize") > 0) {
      op->SetInput("OutSize", Input("OutSize"));
    }
S
sneaxiy 已提交
231 232 233 234 235 236 237 238 239 240
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(InterpolateGradNoNeedBufferVarsInference,
                                      "X");

241 242 243 244
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
245
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
246 247 248
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
249
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
250 251 252
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
253 254 255 256 257 258
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
259 260
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
261
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
262
                       ops::InterpolateGradKernel<double>);