mkldnn_helper.h 10.4 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <mkldnn.h>
G
gongweibao 已提交
17
#include <string>
18
#include <vector>
19
#include "paddle/fluid/framework/operator.h"
M
mozga-intel 已提交
20
#include "paddle/fluid/platform/place.h"
21

T
tensor-tang 已提交
22 23 24 25 26 27
namespace paddle {
namespace platform {

using MKLDNNStream = mkldnn::stream;
using MKLDNNEngine = mkldnn::engine;
using MKLDNNMemory = mkldnn::memory;
28
using MKLDNNMemoryDescriptor = mkldnn::memory::desc;
T
tensor-tang 已提交
29 30 31
using MKLDNNPrimitive = mkldnn::primitive;
using MKLDNNPrimitiveDesc = mkldnn::handle<mkldnn_primitive_desc_t>;

32 33 34 35 36
typedef std::unique_ptr<MKLDNNStream> MKLDNNStreamPtr;
typedef std::unique_ptr<MKLDNNEngine> MKLDNNEnginePtr;
typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
T
tensor-tang 已提交
37

38 39 40 41 42
template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

K
Krzysztof Binias 已提交
43 44 45 46 47
template <typename Type>
void* to_void_reinterpret_cast(const Type* t) {
  return reinterpret_cast<void*>(const_cast<Type*>(t));
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
template <class Type>
using tf_desc = typename Type::desc;

template <class Type>
using tf_pd = typename Type::primitive_desc;

template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
                                                    Args&&... args) {
  auto desc = tf_desc<Type>(mkldnn::prop_kind::forward, (args)...);
  auto pd = new tf_pd<Type>(desc, e);
  return std::shared_ptr<tf_pd<Type>>(pd);
}

template <typename Type, typename Engine, typename Primitive, typename... Args>
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p,
                                   Args&&... args) {
  auto desc = tf_desc<Type>(args...);
  return tf_pd<Type>(desc, e, p);
}

69 70 71 72 73 74 75 76 77 78 79 80
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int>& dims,
                                          mkldnn::memory::data_type data_type,
                                          mkldnn::memory::format format) {
  mkldnn::memory::dims tz = dims;
  return mkldnn::memory::desc({tz}, data_type, format);
}

inline bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_mkldnn = ctx.Attr<bool>("use_mkldnn");
  return use_mkldnn && platform::is_cpu_place(ctx.GetPlace());
}

81 82 83 84 85 86 87 88 89 90
template <typename Type>
mkldnn::memory::data_type MKLDNNGetDataType() {
  return mkldnn::memory::data_undef;
}

template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<float>() {
  return mkldnn::memory::f32;
}

M
mozga-intel 已提交
91 92 93 94 95 96 97 98 99 100 101 102
inline void Reorder(const mkldnn::memory& src, const mkldnn::memory& dst) {
  auto reorder_prim = mkldnn::reorder(src, dst);
  std::vector<mkldnn::primitive> pipeline;
  pipeline.push_back(reorder_prim);
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

inline mkldnn::memory::format GetMKLDNNFormat(const mkldnn::memory memory) {
  return static_cast<mkldnn::memory::format>(
      memory.get_primitive_desc().desc().data.format);
}

103 104 105 106 107 108
inline mkldnn::memory::format GetMKLDNNFormat(
    const mkldnn::sum::primitive_desc& memory) {
  return static_cast<mkldnn::memory::format>(
      memory.dst_primitive_desc().desc().data.format);
}

J
Jacek Czaja 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        key_(base_key),
        is_reusing_(false) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p");
  }

128 129 130 131 132
  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::primitive_desc mdp, void* ptr,
      const std::string& suffix) {
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   "Fail to find mem primitive in device context");
156
    //mem_p = nullptr;
J
Jacek Czaja 已提交
157 158
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(mdp, ptr);
159 160
std::cout<<"mem_p == null"<<std::endl;
//std::cout<<"mdp fmt = "<<mdp.desc().data.format<<"   mem_p fmt = "<<mem_p->get_primitive_desc().desc().data.format<<std::endl;
J
Jacek Czaja 已提交
161 162 163 164 165 166 167
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
168
std::cout<<"mdp fmt = "<<mdp.desc().data.format<<"   mem_p fmt = "<<mem_p->get_primitive_desc().desc().data.format<<std::endl;
J
Jacek Czaja 已提交
169 170 171 172 173 174 175 176 177 178 179 180
    return mem_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(const mkldnn::memory::desc& md,
                                                void* ptr,
                                                const std::string& suffix) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   "Fail to find mem primitive in device context");
181
    //mem_p = nullptr;
J
Jacek Czaja 已提交
182
    if (mem_p == nullptr) {
183
std::cout<<"mem_p == null"<<std::endl;
J
Jacek Czaja 已提交
184 185 186 187 188 189 190 191 192
      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
193
std::cout<<"md fmt = "<<md.data.format<<"   mem_p fmt = "<<mem_p->get_primitive_desc().desc().data.format<<std::endl;
J
Jacek Czaja 已提交
194 195 196 197
    return mem_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
G
gongweibao 已提交
198 199
      mkldnn::memory::primitive_desc& mpd,       // NOLINT
      mkldnn::memory::primitive_desc& user_mpd,  // NOLINT
J
Jacek Czaja 已提交
200
      const std::shared_ptr<mkldnn::memory> user_memory_p,
K
Krzysztof Binias 已提交
201 202
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
203 204 205 206
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {
J
Jacek Czaja 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((target_memory_p != nullptr) || (is_reusing_ == false),
                   "Fail to find mem primitive in device context");
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
      std::shared_ptr<mkldnn::primitive> reorder_p;
      if (mpd != user_mpd) {
        target_memory_p = std::make_shared<mkldnn::memory>(mpd);
X
xiaolil1 已提交
220 221
        auto reorder_p =
            std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
X
xiaolil1 已提交
222 223 224 225 226 227 228 229 230
        if(is_INT8){
            mkldnn::primitive_attr attri;
            attri.set_output_scales(mask, scale_data);

            auto reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
                    new mkldnn::reorder::primitive_desc(mpd, user_mpd, attri));
            auto reorder_p =
                std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd, *user_memory_p, *target_memory_p));
        }
J
Jacek Czaja 已提交
231 232 233 234
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
        pipeline.push_back(*reorder_p);
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
K
Krzysztof Binias 已提交
235
    } else if (!is_persistent) {
J
Jacek Czaja 已提交
236 237 238 239 240 241 242 243 244 245 246
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        pipeline.push_back(*reorder_p);
      }
      is_reusing_ = true;
    }
    return target_memory_p;
  }

G
gongweibao 已提交
247
  static std::string GetHash(mkldnn::memory::dims& operand_dims,  // NOLINT
J
Jacek Czaja 已提交
248 249
                             const std::string& suffix) {
    return dims2str(operand_dims) + suffix;
250
  }
251 252 253 254 255 256 257 258

 protected:
  static std::string dims2str(const mkldnn::memory::dims& operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
259
  }
J
Jacek Czaja 已提交
260 261 262 263 264 265 266 267

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
  bool is_reusing_;
};

268 269 270 271 272 273 274 275 276 277
inline mkldnn::memory::format MKLDNNFormatForSize(
    size_t dims_size, mkldnn::memory::format data_format) {
  if (dims_size == 1) {
    return mkldnn::memory::format::x;
  } else if (dims_size == 2) {
    return mkldnn::memory::format::nc;
  }
  return data_format;
}

278 279 280 281 282 283 284 285 286 287 288 289
inline mkldnn::memory::format data_format_to_memory_format(
    const std::string& data_format) {
  switch (framework::StringToDataLayout(data_format)) {
    case framework::DataLayout::kNHWC:
      return mkldnn::memory::format::nhwc;
    case framework::DataLayout::kNCHW:
      return mkldnn::memory::format::nchw;
    default:
      return mkldnn::memory::format::any;
  }
}

T
tensor-tang 已提交
290 291
}  // namespace platform
}  // namespace paddle