sparse_utils_kernel.cu 23.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"

17 18 19
#include <thrust/execution_policy.h>
#include <thrust/remove.h>

20
#include "paddle/phi/backends/gpu/gpu_context.h"
21
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
22
#include "paddle/phi/core/enforce.h"
23 24
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
25
#include "paddle/phi/core/visit_type.h"
Z
zhangkaihuo 已提交
26
#include "paddle/phi/kernels/funcs/math_function.h"
27
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
28

29
namespace phi {
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
namespace sparse {

template <typename T>
inline __device__ bool DevIsZero(const T* data, const int64_t cols) {
  const T zero = static_cast<T>(0);
  // TODO(zhangkaihuo): check the data is zero or not in parallen when cols > 1
  for (int64_t i = 0; i < cols; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

template <typename T>
__global__ void GetNonZeroNums(const T* dense_data,
                               const int rows,
                               const int cols,
                               int* non_zero_num,
                               int* temp_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  __shared__ int counter;
  if (threadIdx.x == 0) counter = 0;
  __syncthreads();

  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    int index = -1;
    // TODO(zhangkaihuo): when cols=1, vectorization can be used
    if (!DevIsZero(dense_data + i * cols, cols)) {
      // use reductions?
      atomicAdd(&counter, 1);
      index = i;
    }
    temp_indexs[i] = index;
  }
  __syncthreads();
  if (threadIdx.x == 0) {
    atomicAdd(non_zero_num, counter);
  }
}

template <typename T>
__global__ void GetNonZeroElementsAndIndices(const T* dense_data,
                                             const int64_t sparse_dim,
                                             const int64_t cols,
                                             const int64_t* x_dims,
                                             const int non_zero_num,
                                             const int* indexs,
                                             int64_t* indices,
                                             T* sparse_data) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t sparse_index = indexs[i];
    int64_t x_index = sparse_index;
    for (int64_t j = sparse_dim - 1; j >= 0; j--) {
      indices[j * non_zero_num + i] = sparse_index % x_dims[j];
      sparse_index /= x_dims[j];
    }

    for (int j = 0; j < cols; j++) {
      sparse_data[i * cols + j] = dense_data[x_index * cols + j];
    }
  }
}

template <typename T, typename Context>
96 97 98 99
void DenseToCooKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const int64_t sparse_dim,
                      SparseCooTensor* out) {
100 101
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
102 103 104 105 106 107
  PADDLE_ENFORCE_LE(sparse_dim,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "sparse_dim must be less than the size of x.dims()"));
  PADDLE_ENFORCE_GT(
      sparse_dim, 0, phi::errors::InvalidArgument("sparse_dim must be >0"));
108 109 110
  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];
111 112
  DenseTensor nums = phi::Empty<int32_t>(dev_ctx, {1});
  DenseTensor d_x_dims = phi::Empty<int64_t>(dev_ctx, {x_dims.size()});
113 114

  // 1. get numbers of non zero elements, and get the index of non zero elements
115 116 117
  int* nums_ptr = nums.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      nums_ptr, 0, sizeof(int), dev_ctx.stream());
118
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
119

120 121 122
  DenseTensor temp_indexs = phi::Empty<int32_t>(dev_ctx, {rows});
  int* temp_indexs_ptr = temp_indexs.data<int>();

123 124 125 126
  GetNonZeroNums<<<config.block_per_grid.x,
                   config.thread_per_block.x,
                   0,
                   dev_ctx.stream()>>>(
127
      x_data, rows, cols, nums_ptr, temp_indexs_ptr);
128

129 130 131 132 133 134 135 136 137 138 139
#ifdef PADDLE_WITH_HIP
  thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                 temp_indexs_ptr,
                 temp_indexs_ptr + rows,
                 -1);

  // 2. copy non_zero_num to host, copy x_dims to device
  int non_zero_num = 0;
140 141 142 143 144 145 146 147 148 149
  phi::backends::gpu::GpuMemcpyAsync(&non_zero_num,
                                     nums_ptr,
                                     sizeof(int),
                                     gpuMemcpyDeviceToHost,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(d_x_dims.data<int64_t>(),
                                     x_dims.Get(),
                                     x_dims.size() * sizeof(x_dims[0]),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
150 151 152

  dev_ctx.Wait();  // wait the copy

153 154
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
Z
zyfncg 已提交
155 156 157 158 159 160
  phi::DenseTensor indices = phi::Empty<int64_t>(
      dev_ctx, {sparse_dim, static_cast<int64_t>(non_zero_num)});
  int64_t* indices_data = indices.data<int64_t>();
  phi::DenseTensor values;
  values.Resize(values_dims);
  T* sparse_data = dev_ctx.template Alloc<T>(&values);
161 162

  // 3. calc indices by indexs and get values by indexs
163 164 165 166 167 168 169 170 171 172 173 174
  config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
  GetNonZeroElementsAndIndices<<<config.block_per_grid.x,
                                 config.thread_per_block.x,
                                 0,
                                 dev_ctx.stream()>>>(x_data,
                                                     sparse_dim,
                                                     cols,
                                                     d_x_dims.data<int64_t>(),
                                                     non_zero_num,
                                                     temp_indexs_ptr,
                                                     indices_data,
                                                     sparse_data);
175 176 177
  out->SetMember(indices, values, x_dims, true);
}

178 179
template <typename IntT>
__global__ void GetBatchSizes(const IntT* crows,
180 181
                              const int rows,
                              const int batchs,
182
                              IntT* batch_sizes) {
183 184 185 186 187 188
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  if (tid < batchs) {
    batch_sizes[tid] = crows[tid * (rows + 1) + rows];
  }
}

189 190 191 192 193
template <typename IntT>
__global__ void ConvertCsrCrowsToCooRows(const IntT* crows_ptr,
                                         const IntT* crows_offsets,
                                         IntT* rows_ptr,
                                         IntT* batch_ptr,
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
                                         const int rows) {
  const int b = blockIdx.y;
  const int64_t offset = crows_offsets ? crows_offsets[b] : 0;
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < rows; i += gridDim.x * blockDim.x) {
    for (int j = crows_ptr[b * (rows + 1) + i];
         j < crows_ptr[b * (rows + 1) + i + 1];
         j++) {
      rows_ptr[offset + j] = i;
      if (batch_ptr) {
        batch_ptr[offset + j] = b;
      }
    }
  }
}

210
template <typename T, typename IntT>
211 212 213
void CsrToCooGPUKernel(const GPUContext& dev_ctx,
                       const SparseCsrTensor& x,
                       SparseCooTensor* out) {
214
  const DDim& x_dims = x.dims();
215 216 217
  const int64_t non_zero_num = x.cols().numel();
  const auto& csr_crows = x.crows();
  const auto& csr_cols = x.cols();
218
  const auto& csr_values = x.values();
219 220
  const IntT* csr_crows_data = csr_crows.data<IntT>();
  const IntT* csr_cols_data = csr_cols.data<IntT>();
221 222 223 224 225 226 227 228 229
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

230 231 232 233 234 235
  DenseTensor indices = phi::Empty<IntT>(dev_ctx, {sparse_dim, non_zero_num});
  DenseTensor values = phi::EmptyLike<T, GPUContext>(dev_ctx, csr_values);
  DenseTensor offsets = phi::Empty<IntT>(dev_ctx, {batchs});
  IntT* coo_indices = indices.data<IntT>();
  IntT* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  IntT* coo_rows_data =
236
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
237 238 239
  IntT* coo_cols_data = coo_rows_data + non_zero_num;
  IntT* offsets_ptr = batchs == 1 ? nullptr : offsets.data<IntT>();
  T* coo_values_data = values.data<T>();
240 241

  if (batchs > 1) {
242
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
243
    GetBatchSizes<IntT><<<config.block_per_grid.x, config.thread_per_block.x>>>(
244 245 246 247 248 249 250 251 252 253 254 255
        csr_crows_data, rows, batchs, offsets_ptr);

#ifdef PADDLE_WITH_HIP
    thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
    thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                           offsets_ptr,
                           offsets_ptr + batchs,
                           offsets_ptr);
  }

256 257
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rows, 1);
  config.block_per_grid.y = batchs;
258 259 260 261 262 263 264 265 266 267 268 269 270 271
  ConvertCsrCrowsToCooRows<IntT>
      <<<config.block_per_grid, config.thread_per_block.x>>>(
          csr_crows_data, offsets_ptr, coo_rows_data, batch_ptr, rows);

  phi::backends::gpu::GpuMemcpyAsync(coo_cols_data,
                                     csr_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(coo_values_data,
                                     csr_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
272 273 274 275

  out->SetMember(indices, values, x_dims, true);
}

276
template <typename T, typename Context>
277 278 279 280 281 282
void CsrToCooKernel(const Context& dev_ctx,
                    const SparseCsrTensor& x,
                    SparseCooTensor* out) {
  PD_VISIT_BASE_INTEGRAL_TYPES(x.crows().dtype(), "CsrToCooGPUKernel", ([&] {
                                 CsrToCooGPUKernel<T, data_t>(dev_ctx, x, out);
                               }));
283 284 285 286
}

template <typename IntT>
__global__ void GetBatchsOffset(const IntT* batchs_ptr,
Z
zhangkaihuo 已提交
287
                                const int batchs,
288
                                const int non_zero_num,
Z
zhangkaihuo 已提交
289
                                int* batchs_offset) {
290 291 292
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
Z
zhangkaihuo 已提交
293 294 295 296 297
      const int start = batchs_ptr[i];
      const int end = i == non_zero_num - 1 ? batchs : batchs_ptr[i + 1];
      for (int j = start; j < end; j++) {
        batchs_offset[j] = i + 1;
      }
298 299 300 301
    }
  }
}

302
template <typename IntT>
303
__global__ void ConvertCooRowsToCsrCrows(
Z
zhangkaihuo 已提交
304
    const int* batchs_offset,  // can be null if batchs = 1
305 306
    const IntT* coo_rows_data,
    IntT* csr_crows_data,
307 308 309 310 311
    const int rows,
    const int64_t non_zero_num) {
  const int b = blockIdx.y;
  int batch_non_zero_num =
      batchs_offset == nullptr ? non_zero_num : batchs_offset[b];
312
  IntT batch_start = 0;
313 314 315 316
  if (b > 0) {
    batch_start = batchs_offset[b - 1];
    batch_non_zero_num -= batch_start;
  }
Z
zhangkaihuo 已提交
317

318
  const IntT* coo_rows_ptr = coo_rows_data + batch_start;
319 320 321
  const int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < batch_non_zero_num; i += gridDim.x * blockDim.x) {
    if (i == 0) {
322
      for (IntT j = 0; j <= coo_rows_ptr[0]; j++) {
323 324 325
        csr_crows_data[b * (rows + 1) + j] = 0;
      }
    } else {
326
      for (IntT j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
327 328 329 330
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    if (i == batch_non_zero_num - 1) {
331
      for (IntT i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
332 333 334 335 336
           i++) {
        csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
      }
    }
  }
Z
zhangkaihuo 已提交
337 338 339 340 341
  if (batch_non_zero_num == 0) {
    for (int i = tid; i < rows + 1; i += gridDim.x * blockDim.x) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
  }
342 343
}

344
template <typename T, typename IntT>
345 346 347
void CooToCsrGPUKernel(const GPUContext& dev_ctx,
                       const SparseCooTensor& x,
                       SparseCsrTensor* out) {
348 349 350 351
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
352
                    phi::errors::InvalidArgument(
353 354 355 356 357 358 359
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

360 361
  phi::DenseTensor crows = phi::Empty<IntT>(dev_ctx, {batchs * (rows + 1)});
  phi::DenseTensor cols = phi::Empty<IntT>(dev_ctx, {non_zero_num});
362
  phi::DenseTensor values = phi::EmptyLike<T, GPUContext>(dev_ctx, x.values());
363 364
  IntT* csr_crows_data = crows.data<IntT>();
  IntT* csr_cols_data = cols.data<IntT>();
365
  T* csr_values_data = values.data<T>();
366

367
  const auto& coo_indices = x.indices();
368
  const auto& coo_values = x.values();
369 370
  const IntT* batchs_ptr = coo_indices.data<IntT>();
  const IntT* coo_rows_data =
Z
zhangkaihuo 已提交
371
      x_dims.size() == 2 ? batchs_ptr : batchs_ptr + non_zero_num;
372
  const IntT* coo_cols_data = coo_rows_data + non_zero_num;
373 374
  const T* coo_values_data = coo_values.data<T>();

375
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, batchs, 1);
376
  if (batchs > 1) {
Z
zhangkaihuo 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
    phi::DenseTensor batchs_offset = phi::Empty<int>(dev_ctx, {batchs});
    int* batchs_offset_ptr = batchs_offset.data<int>();
    phi::funcs::SetConstant<GPUContext, int> set_zero;
    // set zero if the nnz=0 of batchs[0]
    set_zero(dev_ctx, &batchs_offset, static_cast<IntT>(0));
    GetBatchsOffset<IntT><<<config.block_per_grid.x,
                            config.thread_per_block.x,
                            0,
                            dev_ctx.stream()>>>(
        batchs_ptr, batchs, non_zero_num, batchs_offset_ptr);

390
    config.block_per_grid.y = batchs;
391 392 393 394
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
395 396
        batchs_offset_ptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  } else {
397 398 399 400
    ConvertCooRowsToCsrCrows<IntT><<<config.block_per_grid.x,
                                     config.thread_per_block.x,
                                     0,
                                     dev_ctx.stream()>>>(
401 402 403
        nullptr, coo_rows_data, csr_crows_data, rows, non_zero_num);
  }

404 405 406 407 408 409 410 411 412 413
  phi::backends::gpu::GpuMemcpyAsync(csr_cols_data,
                                     coo_cols_data,
                                     sizeof(IntT) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(csr_values_data,
                                     coo_values_data,
                                     sizeof(T) * non_zero_num,
                                     gpuMemcpyDeviceToDevice,
                                     dev_ctx.stream());
414
  out->SetMember(crows, cols, values, x_dims);
415 416
}

417
template <typename T, typename Context>
418 419 420 421 422 423
void CooToCsrKernel(const Context& dev_ctx,
                    const SparseCooTensor& x,
                    SparseCsrTensor* out) {
  PD_VISIT_BASE_INTEGRAL_TYPES(x.indices().dtype(), "CooToCsrGPUKernel", ([&] {
                                 CooToCsrGPUKernel<T, data_t>(dev_ctx, x, out);
                               }));
424 425
}

Z
zhangkaihuo 已提交
426
template <typename ValueT, typename IndicesT>
427 428 429 430 431 432 433
__global__ void KernelCooToDense(const IndicesT* indices,
                                 const int64_t* sparse_offsets,
                                 const ValueT* data,
                                 ValueT* dense_data,
                                 const IndicesT non_zero_num,
                                 const int64_t base_offset,
                                 const int64_t sparse_dim) {
Z
zhangkaihuo 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index += indices[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      dense_data[index * base_offset + j] = data[i * base_offset + j];
    }
  }
}

447
template <typename T, typename IntT>
448 449 450
void CooToDenseGPUKernel(const GPUContext& dev_ctx,
                         const SparseCooTensor& x,
                         DenseTensor* out) {
Z
zhangkaihuo 已提交
451 452
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
453
  const auto indices = x.indices();
454
  const auto values = x.values();
Z
zhangkaihuo 已提交
455 456 457 458 459 460 461 462 463
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
  const int64_t dense_dim = values.dims().size() - 1;

  const auto place = dev_ctx.GetPlace();
  const T* x_data = values.data<T>();
464 465
  *out = phi::Empty(
      dev_ctx, phi::DenseTensorMeta(x.dtype(), x.dims(), x.values().layout()));
Z
zhangkaihuo 已提交
466
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
467 468 469 470 471 472 473 474 475 476 477
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

478 479 480 481 482 483 484 485 486
  DenseTensor d_sparse_offsets = Empty<int64_t>(dev_ctx, {sparse_dim});

  phi::backends::gpu::GpuMemcpyAsync(d_sparse_offsets.data<int64_t>(),
                                     sparse_offsets.data(),
                                     sparse_dim * sizeof(int64_t),
                                     gpuMemcpyHostToDevice,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      out_data, 0, sizeof(T) * out->numel(), dev_ctx.stream());
Z
zhangkaihuo 已提交
487

488 489
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);
Z
zhangkaihuo 已提交
490

491
  KernelCooToDense<T, IntT>
492 493 494
      <<<config.block_per_grid.x,
         config.thread_per_block.x,
         0,
495
         dev_ctx.stream()>>>(indices.data<IntT>(),
496 497 498 499 500 501
                             d_sparse_offsets.data<int64_t>(),
                             x_data,
                             out_data,
                             non_zero_num,
                             base_offset,
                             sparse_dim);
Z
zhangkaihuo 已提交
502 503
}

504
template <typename T, typename Context>
505 506 507
void CooToDenseKernel(const Context& dev_ctx,
                      const SparseCooTensor& x,
                      DenseTensor* out) {
Z
zhangkaihuo 已提交
508
  PD_VISIT_BASE_INTEGRAL_TYPES(
509 510
      x.indices().dtype(), "CooToDenseGPUKernel", ([&] {
        CooToDenseGPUKernel<T, data_t>(dev_ctx, x, out);
511 512 513
      }));
}

514
}  // namespace sparse
515
}  // namespace phi
516

517
PD_REGISTER_KERNEL(dense_to_coo,
518 519
                   GPU,
                   ALL_LAYOUT,
520
                   phi::sparse::DenseToCooKernel,
521 522
                   float,
                   double,
523
                   phi::dtype::float16,
524 525 526 527 528
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
529

530
PD_REGISTER_KERNEL(csr_to_coo,
531 532
                   GPU,
                   ALL_LAYOUT,
533
                   phi::sparse::CsrToCooKernel,
534 535
                   float,
                   double,
536
                   phi::dtype::float16,
537 538 539 540 541
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
542

543
PD_REGISTER_KERNEL(coo_to_csr,
544 545
                   GPU,
                   ALL_LAYOUT,
546
                   phi::sparse::CooToCsrKernel,
547 548
                   float,
                   double,
549
                   phi::dtype::float16,
550 551 552 553 554 555
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

556
PD_REGISTER_KERNEL(dense_to_csr,
557 558
                   GPU,
                   ALL_LAYOUT,
559
                   phi::sparse::DenseToCsrKernel,
560 561
                   float,
                   double,
562
                   phi::dtype::float16,
563 564 565 566 567
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
568

569
PD_REGISTER_KERNEL(coo_to_dense,
Z
zhangkaihuo 已提交
570 571
                   GPU,
                   ALL_LAYOUT,
572
                   phi::sparse::CooToDenseKernel,
Z
zhangkaihuo 已提交
573 574
                   float,
                   double,
575
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
576 577 578 579 580 581
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

582
PD_REGISTER_KERNEL(csr_to_dense,
Z
zhangkaihuo 已提交
583 584
                   GPU,
                   ALL_LAYOUT,
585
                   phi::sparse::CsrToDenseKernel,
Z
zhangkaihuo 已提交
586 587
                   float,
                   double,
588
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
589 590 591 592 593
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
594

595
PD_REGISTER_KERNEL(values_coo,
596 597
                   GPU,
                   ALL_LAYOUT,
598
                   phi::sparse::ValuesCooKernel,
599 600 601 602 603 604 605 606 607 608 609
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

610
PD_REGISTER_KERNEL(values_csr,
611 612
                   GPU,
                   ALL_LAYOUT,
613
                   phi::sparse::ValuesCsrKernel,
614 615 616 617 618 619 620 621 622 623
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
624 625 626 627 628 629 630 631 632 633 634 635

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}