the_one_ps.py 54.9 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17

import warnings

import os
18
import paddle.distributed.fleet.proto.the_one_ps_pb2 as ps_pb2
Z
ziyoujiyi 已提交
19 20 21
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
from paddle.fluid import core
Z
ziyoujiyi 已提交
22
from paddle.distributed.ps.utils.public import *
Z
ziyoujiyi 已提交
23 24 25 26 27
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
W
wangguanqun 已提交
28 29
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
Z
ziyoujiyi 已提交
30 31 32
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format

Z
ziyoujiyi 已提交
33 34 35 36
__all__ = [
    'Table', 'SparseTable', 'GeoSparseTable', 'BarrierTable', 'TensorTable',
    'DenseTable'
]
Z
ziyoujiyi 已提交
37 38


W
wangguanqun 已提交
39 40 41 42
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
43 44
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
45 46 47


def parse_table_class(varname, program_id, context):
48
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
49
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
50 51 52 53 54 55 56 57 58 59 60 61
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
62
def check_embedding_dim(accessor_proto, varname, program_id, context):
63
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
64
    embedding_dim = 0
W
wangguanqun 已提交
65
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
66 67
        if var.name == varname:
            embedding_dim = var.shape[1]
Z
ziyoujiyi 已提交
68 69
            print('new var: {}, {}, {}'.format(var, embedding_dim,
                                               accessor_proto.fea_dim))
Z
ziyoujiyi 已提交
70
            break
71

Z
ziyoujiyi 已提交
72
    fea_dim = accessor_proto.fea_dim
73 74 75 76 77 78 79 80 81 82 83
    if accessor_proto.accessor_class == "SparseAccessor":
        if fea_dim != embedding_dim + 2:
            raise ValueError(
                "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}".
                format(embedding_dim + 2, fea_dim))
    else:
        if fea_dim != embedding_dim:
            raise ValueError(
                "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}".
                format(embedding_dim, fea_dim))

Z
ziyoujiyi 已提交
84
    embedx_dim = accessor_proto.embedx_dim
85 86 87 88 89 90 91 92 93 94
    if accessor_proto.accessor_class == "SparseAccessor":
        if embedx_dim != embedding_dim - 1:
            raise ValueError(
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}".
                format(embedding_dim - 1, embedx_dim))
    else:
        if embedx_dim != embedding_dim - 3:
            raise ValueError(
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}".
                format(embedding_dim - 3, embedx_dim))
Z
ziyoujiyi 已提交
95 96


Z
ziyoujiyi 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110
class Service:
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
    def __init__(self):
111
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
112 113 114 115 116 117

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
118 119 120 121
class Accessor:
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
122 123
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
124

Z
ziyoujiyi 已提交
125 126
    # TableAccessorParameter accessor
    def _set(self, accessor_proto, varname, program_id, context):
127 128
        main_program, startup_program, idx = get_program_by_id(context,
                                                               program_id)
Z
ziyoujiyi 已提交
129 130 131 132 133
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
134

Z
ziyoujiyi 已提交
135
        if not accessor_proto.HasField("accessor_class"):
136 137
            # DownpourSparseValueAccessor
            accessor_proto.accessor_class = "SparseAccessor"
Z
ziyoujiyi 已提交
138
        if not accessor_proto.HasField("fea_dim"):
139 140 141 142
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.fea_dim = embedding_dim + 2
            else:
                accessor_proto.fea_dim = embedding_dim
Z
ziyoujiyi 已提交
143
        if not accessor_proto.HasField("embedx_dim"):
144 145 146 147
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.embedx_dim = embedding_dim - 1
            else:
                accessor_proto.embedx_dim = embedding_dim - 3
Z
ziyoujiyi 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

        ctr_accessor_param = accessor_proto.ctr_accessor_param
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
                accessor_proto.embed_sgd_param, accessor_proto.embedx_sgd_param
        ]:
            if not sgd_param.HasField("name"):
                sgd_param.name = "SparseAdaGradSGDRule"
            if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
                    sgd_param.naive.learning_rate = 0.05
                if not sgd_param.naive.HasField("initial_range"):
                    sgd_param.naive.initial_range = 0.0001
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseAdamSGDRule":
                if not sgd_param.adam.HasField("learning_rate"):
                    sgd_param.adam.learning_rate = 0.001
                if not sgd_param.adam.HasField("initial_range"):
                    sgd_param.adam.initial_range = 0.0001
                if not sgd_param.adam.HasField("beta1_decay_rate"):
                    sgd_param.adam.beta1_decay_rate = 0.9
                if not sgd_param.adam.HasField("beta2_decay_rate"):
                    sgd_param.adam.beta2_decay_rate = 0.999
                if not sgd_param.adam.HasField("ada_epsilon"):
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
Z
ziyoujiyi 已提交
208
    def __init__(self):
Z
ziyoujiyi 已提交
209 210 211
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
212 213 214 215
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
216
        self.sync = False
Z
ziyoujiyi 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
        opt_input_map["adam_d2sum"] = [
            ("Param", None), ("D2Sum", None), ("G2Sum", None), ("Moment", None),
            ("MomentDecayRate", 1), ("AdaDecayRate", 1), ("AdaEpsilon", 1),
            ("LearningRate", 1)
        ]
        opt_input_map["sum"] = [("Param", None)]
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
W
wangguanqun 已提交
237
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
238 239 240 241 242 243 244 245 246

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
W
wangguanqun 已提交
247
        opt_attr_map["summary"] = []
Z
ziyoujiyi 已提交
248 249 250 251 252 253 254 255 256 257 258

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
259
    def parse_entry(self, varname, program_id, context):
260 261
        main_program, startup_program, idx = get_program_by_id(context,
                                                               program_id)
W
wangguanqun 已提交
262
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
292
        # print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
293 294 295 296
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
297
                # print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
298
                for attr in self.opt_init_map[op.type]:
299
                    # print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
300
                    init_attr.append(str(op.attr(attr)))
301
                    # print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
302 303 304 305
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
306 307 308 309 310 311
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
312 313
        # print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
        #     ctx.table_id(), ctx.is_datanorm_table()))
W
wangguanqun 已提交
314

315 316
        main_program, startup_program, idx = get_program_by_id(context,
                                                               ctx.program_id())
Z
ziyoujiyi 已提交
317 318 319
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
320 321
        # print("the one ps optimizer_ops:", optimizer_ops)
        # print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
                    op.input("Param")[0] ==
                    context['grad_name_to_param_name'][grad_name]):
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
340 341
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354

        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
355 356 357 358 359
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
                #for dims
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
374
                        shape = single_dim
Z
ziyoujiyi 已提交
375
                    else:
W
wangguanqun 已提交
376
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
377 378 379 380 381 382 383
                dims.append(shape)

                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
384 385
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
386 387
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
388
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
389 390 391 392 393 394 395 396 397 398 399 400

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
            elif self.accessor_class == "summary":
                #for dims
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

                #for initializers
                if formal_name == "Param":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                elif formal_name == "SummaryDecayRate":
418
                    initializer = "fill_constant&0.999999"
W
wangguanqun 已提交
419 420 421
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
422 423 424 425 426 427 428 429
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
430 431
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
432 433
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
434
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
435 436 437

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
438
                            shape = single_dim
Z
ziyoujiyi 已提交
439
                        else:
W
wangguanqun 已提交
440
                            shape = self.get_shard(size, pserver_num,
Z
ziyoujiyi 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
                                                   pserver_id)
                    dims.append(shape)

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                    initializers.append(initializer)

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
457 458 459 460 461 462 463 464 465 466 467 468
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
Z
ziyoujiyi 已提交
469 470 471


class Tensor:
Z
ziyoujiyi 已提交
472 473 474 475 476 477 478 479 480 481 482 483
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
        tensor_proto.main_program_id = self.tensor_dict.get("main_program_id",
                                                            0)
        tensor_proto.startup_program_id = self.tensor_dict.get(
            "startup_program_id", 0)
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
            "tensor_table_class", '')
Z
ziyoujiyi 已提交
484 485 486 487 488 489 490


class Table:
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
491 492 493
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
494 495
        self.tensor = None

Z
ziyoujiyi 已提交
496 497
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
498 499


Z
ziyoujiyi 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
class BarrierTable(Table):
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
        table_proto.type = ps_pb2.PS_OTHER_TABLE

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
533 534


Z
ziyoujiyi 已提交
535 536 537 538 539 540
class TensorTable(Table):
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
541

Z
ziyoujiyi 已提交
542 543 544 545
    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.type = ps_pb2.PS_OTHER_TABLE
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
546

Z
ziyoujiyi 已提交
547
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
548

Z
ziyoujiyi 已提交
549 550 551
        table_proto.common.table_name = self.tensor_dict.get("feed_var_name",
                                                             '')
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
552

Z
ziyoujiyi 已提交
553 554
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
555 556


Z
ziyoujiyi 已提交
557 558 559 560 561 562 563 564
class SparseTable(Table):
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
565

Z
ziyoujiyi 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    def _set(self, table_proto):
        ctx = self.ctx
        if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1 or (
                ctx.is_sparse() == False):
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
        table_proto.type = ps_pb2.PS_SPARSE_TABLE
        table_proto.shard_num = self.shard_num

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]

        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
            "user_defined_strategy"].sparse_table_configs
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
        table_proto.table_class = 'MemorySparseTable'
        warnings.warn("The PS mode must use MemorySparseTable.")
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
            table_proto.shard_num = 1000
            warnings.warn(
                "The shard_num of sparse table is not set, use default value 1000."
            )
Z
ziyoujiyi 已提交
596

Z
ziyoujiyi 已提交
597 598 599
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
                "The accessor of sparse table is not set, use default value.")
Z
ziyoujiyi 已提交
600

Z
ziyoujiyi 已提交
601 602 603 604
        table_proto.accessor.ParseFromString(
            usr_table_proto.accessor.SerializeToString())
        self.accessor._set(table_proto.accessor, self.common.table_name,
                           ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
605

Z
ziyoujiyi 已提交
606 607
        check_embedding_dim(table_proto.accessor, self.common.table_name,
                            ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
608

Z
ziyoujiyi 已提交
609 610 611 612 613
        adam_d2sum = self.context["user_defined_strategy"].adam_d2sum
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name,
                                ctx.program_id(), self.context)
        self.common.sync = True if self.context['is_sync'] else False
Z
ziyoujiyi 已提交
614

Z
ziyoujiyi 已提交
615
        self.common._set(table_proto.common)
Z
ziyoujiyi 已提交
616 617


Z
ziyoujiyi 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
class GeoSparseTable(SparseTable):
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
        self.table_class = "SparseGeoTable"
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
        if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1 or (
                ctx.is_sparse() == False):
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
        table_proto.type = ps_pb2.PS_SPARSE_TABLE
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]
        adam_d2sum = self.context["user_defined_strategy"].adam_d2sum
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name,
                                ctx.program_id(), self.context)
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
655

Z
ziyoujiyi 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    def _set(self, table_proto):
        ctx = self.ctx
        if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1 or (
                ctx.is_sparse() == True):
            return

        table_proto.table_id = ctx.table_id()

        table_proto.type = ps_pb2.PS_DENSE_TABLE
        table_proto.table_class = "CommonDenseTable"
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        adam_d2sum = self.context["user_defined_strategy"].adam_d2sum
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name,
                                ctx.program_id(), self.context)
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
Z
ziyoujiyi 已提交
683
    def __init__(self):
Z
ziyoujiyi 已提交
684
        pass
Z
ziyoujiyi 已提交
685

Z
ziyoujiyi 已提交
686 687
    def _set(self):
        pass
Z
ziyoujiyi 已提交
688 689


Z
ziyoujiyi 已提交
690 691 692 693 694 695
class DownpourServer(Server):
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
696 697 698 699


class Worker:
    def __init__(self):
Z
ziyoujiyi 已提交
700
        pass
Z
ziyoujiyi 已提交
701

Z
ziyoujiyi 已提交
702 703
    def _set(self):
        pass
Z
ziyoujiyi 已提交
704 705


Z
ziyoujiyi 已提交
706 707 708 709 710 711
class DownpourWorker(Worker):
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
712 713 714


class fsClient:
Z
ziyoujiyi 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
734
        self.barrier_table_id = None
Z
ziyoujiyi 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        self.send_ctx = get_the_one_send_context(
            self.context,
            use_origin_program=True,
            split_dense_table=self.is_heter_ps_mode)

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

        self.ps_desc = ps_pb2.PSParameter()

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
            tables.append(globals()['TensorTable'](len(tables), tensor_dict,
                                                   self.context['role_maker']))
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
                    tables.append(globals()['GeoSparseTable'](self.context,
                                                              ctx))
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
780
        else:
Z
ziyoujiyi 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

    def build_worker_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add(
            )
            table._set(table_proto)
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
794 795
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
796 797 798 799 800
        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
801
        self.sparse_table_maps = {}
Z
ziyoujiyi 已提交
802 803 804 805 806 807 808 809 810 811 812 813
        for table in self.tables:
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
            if table_proto.type == ps_pb2.PS_SPARSE_TABLE and table_proto.common is not None:
                self.sparse_table_maps[
                    table_proto.common.table_name] = table_proto.table_id

        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
814 815 816 817 818 819 820 821 822 823


class TheOnePSRuntime(RuntimeBase):
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
        self._server_sub_program = []
        self._heter_client = None
824
        self._send_ctx = None
Z
ziyoujiyi 已提交
825 826 827 828

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
W
wangguanqun 已提交
829

Z
ziyoujiyi 已提交
830
        self.origin_main_program = context["origin_main_program"]
Z
ziyoujiyi 已提交
831 832 833 834 835
        self.origin_main_programs = context.get("origin_main_programs",
                                                [self.origin_main_program])
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
            'origin_startup_programs', [context['origin_startup_program']])
Z
ziyoujiyi 已提交
836 837 838 839 840 841
        self.context[
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
        self.context['trainer'] = TrainerRuntimeConfig(context[
            'valid_strategy'])
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
842 843
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
            'use_ps_gpu']
Z
ziyoujiyi 已提交
844
        self.context['is_sync'] = True if self.context[
Z
ziyoujiyi 已提交
845 846
            'ps_mode'] == DistributedMode.SYNC else False
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
847 848
        self.context['tensor_table'] = {}
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
849

850
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
851
        self.string_hosts = []
852
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
853 854 855 856 857 858
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

        self.ps_desc_builder = PsDescBuilder(self.context)

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
    def _init_params(self, scopes, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", idx, table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)

    def _pull_all_dense(self, scopes, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull all dense:", idx, table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)

    def _pull_dense(self, program, scope, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull dense:", table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)

    def _init_worker(self, scopes=None):
Z
ziyoujiyi 已提交
893
        worker_desc = self.ps_desc_builder.build_worker_desc()
Z
ziyoujiyi 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
            main_program._fleet_opt[
                "worker_places"] = [int(s) for s in gpus_env.split(",")]

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

911
        proto_txt = worker_desc
Z
ziyoujiyi 已提交
912 913 914 915 916 917 918 919 920 921
        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        if debug:
            print("worker: \n{}".format(proto_txt))

        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
922
            ep_list=self.endpoints)
923
        self._send_ctx = send_ctx
Z
ziyoujiyi 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
        trainer_config = self.context['trainer']

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        if debug:
            print("worker: \n{}".format(proto_txt))
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

940
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
941 942 943 944 945

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
946
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
947

948 949 950 951 952 953 954 955 956 957
        role_id = get_role_id(self.role_maker)
        self._worker.init_worker(proto_txt, self.string_hosts, role_id)

        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator = Communicator(
                trainer_config.mode, kwargs,
                trainer_config.get_communicator_flags())
            self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt,
                                             self.string_hosts,
                                             fluid.global_scope())
Z
ziyoujiyi 已提交
958
        fleet.util.barrier()
959 960 961

        # info = self._communicator.get_client_info()
        info = self._worker.get_client_info()
Z
ziyoujiyi 已提交
962 963 964 965 966 967
        if isinstance(info, list) and len(info) > 0:
            all_info = self.role_maker._all_gather(info[0])
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
968 969 970 971 972

            # self._communicator.set_clients(all_info)
            # self._communicator.create_client_to_client_connection()
            self._worker.set_clients(all_info)
            self._worker.create_client2client_connection()
Z
ziyoujiyi 已提交
973 974 975 976 977 978 979 980
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

981
        # for GEO
Z
ziyoujiyi 已提交
982 983 984 985 986 987 988
        if self.role_maker._is_first_worker() and self.is_heter_ps_mode:
            # for ps-heter mode load all parameters on first_worker
            init_params = get_the_one_recv_context(
                self.context, split_dense_table=True, use_origin_program=True)
        else:
            init_params = dense_map

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
        # if not is_test:
        #     self._communicator.init_params(init_params)
        #     fleet.util.barrier()
        # self._communicator.pull_dense(init_params)
        # fleet.util.barrier()

        if scopes is None:
            if len(self.origin_main_programs) > 1:
                raise ValueError(
                    "You must set the scope list when you have Multiple programs"
                )
            scopes = [fluid.global_scope()]
        if len(self.origin_main_programs) != len(scopes):
            raise VauleError("len(programs) != len(scopes)")

        self.scopes = scopes
Z
ziyoujiyi 已提交
1005
        if not is_test:
1006 1007 1008 1009 1010 1011
            if self.context['ps_mode'] == DistributedMode.GEO:
                self._communicator.init_params(init_params)
            else:
                if role_id == 0:
                    self._init_params(scopes, send_ctx, dense_map)

Z
ziyoujiyi 已提交
1012
            fleet.util.barrier()
1013
        self._pull_all_dense(scopes, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1014 1015
        fleet.util.barrier()

1016 1017 1018 1019 1020
        if self.context['ps_mode'] == DistributedMode.GEO:
            if not self._communicator.is_running():
                self._communicator.start()
            else:
                warnings.warn("communicator has been initialized, skip")
Z
ziyoujiyi 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())
            if self.is_heter_ps_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
                self._heter_client = HeterClient(next_trainers,
                                                 previous_trainers,
                                                 self.role_maker._role_id())

    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
1042
        server_desc = self.ps_desc_builder.build_server_desc()
Z
ziyoujiyi 已提交
1043 1044 1045 1046 1047 1048
        role_id = get_role_id(self.role_maker)
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

        self._server = fluid.core.DistFleetWrapper()
Z
ziyoujiyi 已提交
1049 1050
        self._server.init_server(server_desc, self.string_hosts, role_id,
                                 trainers, self._server_sub_program)
Z
ziyoujiyi 已提交
1051

W
wangguanqun 已提交
1052 1053 1054
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                False)
Z
ziyoujiyi 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
                        "fleet.init server can only load sparse variables in {}".
                        format(distributed_varnames))
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
1071
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
1086 1087 1088
        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator.stop()
        self._worker.stop_worker()
Z
ziyoujiyi 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        if self.is_heter_ps_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1099
            from .utils.public import _get_varname_parts
Z
ziyoujiyi 已提交
1100 1101 1102 1103
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1104
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1115 1116 1117 1118 1119 1120 1121
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

Z
ziyoujiyi 已提交
1122 1123
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
W
wangguanqun 已提交
1124 1125
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                     True)
Z
ziyoujiyi 已提交
1126
        values = []
W
wangguanqun 已提交
1127
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1128 1129 1130 1131
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1132
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
                                       main_program,
                                       mode=0):

        denses = get_the_one_recv_context(
            self.context,
            is_dense=True,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
Z
ziyoujiyi 已提交
1155
            split_dense_table=self.is_heter_ps_mode,
Z
ziyoujiyi 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
            use_origin_program=True)

        sparse_varnames = self._save_sparse_params(executor, dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)
        self._communicator.pull_dense(denses)

        saved_varnames = sparse_varnames

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(saved_varnames),
                main_program.list_vars()))

        import paddle
        for var in remaining_vars:
            # if var.name not in recv_dense_varnames:
            #     continue
            tensor = var.get_value()
            paddle.save(
                tensor, os.path.join(dirname, var.name), use_binary_format=True)

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        mode=0,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        if main_program is None:
1208
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        # Todo(MrChengmo): Save optimizer status
        # self._save_distributed_persistables(executor, dirname, main_program,
        #                                     mode)
        self._worker.save_all_model(dirname, mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True,
                                           mode=0):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        import paddle
1243 1244 1245 1246 1247
        program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(program))
        scope = self.scopes[idx]
        print("save inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1263
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)

1276 1277 1278
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
Z
ziyoujiyi 已提交
1279 1280
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1281 1282 1283
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)
        self._pull_dense(program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(sparse_names),
                infer_program.list_vars()))

        for var in remaining_vars:
1294
            tensor = var.get_value(scope)
Z
ziyoujiyi 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
            paddle.save(
                tensor,
                os.path.join(model_path, var.name),
                use_binary_format=True)

    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)

    def _load_sparse_params(self, dirname, context, main_program, mode):
W
wangguanqun 已提交
1307
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
Z
ziyoujiyi 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
                                                     True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
        if main_program is None:
            main_program = self.origin_main_program

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        denses = get_the_one_recv_context(
            self.context,
            is_dense=True,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(loaded_varnames),
                main_program.list_vars()))

        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
            var.set_value(tensor)

        self._communicator.init_params(denses)

    def _load_distributed_persistables(self, path, mode):
        self._worker.load_model(path, mode)

    def load_model(self, path, mode):
        if mode == 0 or mode == 3:
            self._load_distributed_persistables(path, mode)
        else:
            self._ps_inference_load_inference_model(path, mode)

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1388
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397
                self.context,
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()