test_softmax_op.py 16.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15
import unittest
16

Q
qijun 已提交
17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19

20
import paddle
21
import paddle.nn.functional as F
22 23
from paddle import fluid
from paddle.fluid import core
24 25

np.random.seed(10)
Q
qijun 已提交
26 27 28 29


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
30 31
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
32
    shiftx = (x - np.max(x)).clip(-64.0)
Q
qijun 已提交
33 34 35 36
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


37 38 39 40 41 42 43 44 45
def ref_softmax(x, axis=None, dtype=None):
    x_t = x.copy()
    if dtype is not None:
        x_t = x_t.astype(dtype)
    if axis is None:
        axis = -1
    return np.apply_along_axis(stable_softmax, axis, x_t)


Q
qijun 已提交
46
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
47 48 49
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
50 51 52
    def get_axis(self):
        return -1

Q
qijun 已提交
53
    def setUp(self):
Q
fix bug  
qijun 已提交
54
        self.op_type = "softmax"
55 56
        self.prim_op_type = "comp"
        self.python_api = F.softmax
57
        self.public_python_api = F.softmax
58
        self.use_cudnn = False
K
Kexin Zhao 已提交
59
        self.use_mkldnn = False
60 61
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
62
        self.init_kernel_type()
F
fengjiayi 已提交
63
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
64
        self.axis = self.get_axis()
F
fengjiayi 已提交
65

66
        np.random.seed(0)
F
fengjiayi 已提交
67
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
68
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
69 70 71

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
72
        self.attrs = {
D
dengkaipeng 已提交
73
            'axis': self.axis,
74
            'use_cudnn': self.use_cudnn,
75
            'use_mkldnn': self.use_mkldnn,
76
        }
77
        self.enable_cinn = True
78

K
Kexin Zhao 已提交
79
    def init_kernel_type(self):
80
        pass
Q
qijun 已提交
81

Q
qijun 已提交
82
    def test_check_output(self):
83
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
84 85
        if self.use_cudnn:
            place = core.CUDAPlace(0)
86
            self.check_output_with_place(place, atol=1e-5)
87
        else:
88
            self.check_output(check_prim=True)
Q
qijun 已提交
89

Q
qijun 已提交
90
    def test_check_grad(self):
91
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
92
        if self.use_cudnn or self.dtype == np.float16:
93
            place = core.CUDAPlace(0)
C
chengduo 已提交
94 95
            if core.is_float16_supported(place):
                self.check_grad_with_place(
96 97
                    place,
                    ["X"],
98 99
                    "Out",
                    max_relative_error=0.01,
100
                    check_dygraph=(not self.use_mkldnn),
101
                )
102
        else:
103 104 105 106
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
107
                check_dygraph=(not self.use_mkldnn),
108
                check_prim=True,
109
            )
110 111


112 113 114 115 116
class TestSoftmaxOpfp32(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float32


117 118 119
class TestSoftmaxOp_ZeroDim1(TestSoftmaxOp):
    def setUp(self):
        self.op_type = "softmax"
120 121
        self.prim_op_type = "comp"
        self.python_api = F.softmax
122
        self.public_python_api = F.softmax
123 124 125 126
        self.use_cudnn = False
        self.use_mkldnn = False
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
127
        self.init_kernel_type()
128 129 130 131 132 133 134 135 136 137 138 139

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        out = np.array(1.0).astype(self.dtype)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {
            'axis': -1,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
        }
140 141 142 143 144 145 146 147 148
        self.enable_cinn = False

    def test_check_output(self):
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output(check_prim=True)
149 150 151 152 153 154 155 156


@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
class TestSoftmaxOp_ZeroDim2(TestSoftmaxOp):
    def setUp(self):
        self.op_type = "softmax"
157
        self.python_api = F.softmax
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        self.use_cudnn = True
        self.use_mkldnn = False
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, []).astype(self.dtype)
        out = np.array(1.0).astype(self.dtype)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {
            'axis': -1,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
        }
174 175 176 177 178 179 180 181 182
        self.enable_cinn = False

    def test_check_output(self):
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output(check_prim=True)
183 184


F
fengjiayi 已提交
185 186 187 188 189
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


214
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
215 216 217 218 219 220 221
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


222 223 224
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
225
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
226 227 228 229
    def init_kernel_type(self):
        self.use_cudnn = True


230 231 232
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
F
fengjiayi 已提交
233 234 235 236 237
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


238 239 240
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
241 242 243 244 245 246 247 248
class TestSoftmaxCUDNNOp3(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


249 250 251
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
252 253 254 255 256 257 258 259
class TestSoftmaxCUDNNOp4(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


260 261 262
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
D
dengkaipeng 已提交
263
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
264 265 266
    def get_x_shape(self):
        return [2, 3, 4, 5]

G
GaoWei8 已提交
267 268 269 270
    def get_axis(self):
        return 2


271 272 273
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
274 275 276 277
class TestSoftmaxCUDNNOp6(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

D
dengkaipeng 已提交
278
    def get_axis(self):
279
        return 3
D
dengkaipeng 已提交
280 281


282 283 284
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
285 286 287 288 289
class TestSoftmaxCUDNNOp7(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]


290 291 292
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
293 294 295 296 297 298 299 300
class TestSoftmaxCUDNNOp8(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 0


301 302 303
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
304 305 306 307 308 309 310 311
class TestSoftmaxCUDNNOp9(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 1


312 313 314
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
315 316 317 318 319 320 321 322
class TestSoftmaxCUDNNOp10(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 2


323 324 325
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
326 327 328 329 330 331 332 333
class TestSoftmaxCUDNNOp11(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 3


334 335 336
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
G
GaoWei8 已提交
337 338 339 340 341 342 343 344
class TestSoftmaxCUDNNOp12(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 4


345 346 347
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
348 349 350 351 352 353 354 355 356 357
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
358 359 360 361
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

362

363 364 365
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
Z
zhupengyang 已提交
366
class TestSoftmaxFP16Op2(TestSoftmaxFP16Op):
F
fengjiayi 已提交
367
    def get_x_shape(self):
Z
zhupengyang 已提交
368
        return [2, 3, 4, 10]
369

F
fengjiayi 已提交
370

371 372 373
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
K
Kexin Zhao 已提交
374 375
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
376
        self.use_cudnn = True
K
Kexin Zhao 已提交
377 378 379 380 381 382 383
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
384 385


386 387 388
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
F
fengjiayi 已提交
389 390 391 392 393
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


394 395 396
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
397 398 399
class TestSoftmaxBF16Op(OpTest):
    def setUp(self):
        self.op_type = "softmax"
400
        self.python_api = F.softmax
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        self.use_cudnn = self.init_cudnn()
        self.use_mkldnn = False
        self.dtype = np.uint16
        self.shape = [10, 10]
        self.axis = -1

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, self.shape).astype(np.float32)
        out = np.apply_along_axis(stable_softmax, self.axis, x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}
        self.attrs = {
            'axis': self.axis,
            'use_cudnn': self.use_cudnn,
418
            'use_mkldnn': self.use_mkldnn,
419 420 421 422 423 424 425
        }

    def init_cudnn(self):
        return False

    def test_check_output(self):
        place = core.CUDAPlace(0)
426
        self.check_output_with_place(place, check_dygraph=(not self.use_mkldnn))
427 428 429

    def test_check_grad(self):
        place = core.CUDAPlace(0)
430 431 432 433 434
        self.check_grad_with_place(
            place,
            ["X"],
            "Out",
            numeric_grad_delta=0.05,
435
            check_dygraph=(not self.use_mkldnn),
436
        )
437 438 439


@unittest.skipIf(
440 441
    not core.is_compiled_with_cuda()
    or core.cudnn_version() < 8100
442
    or paddle.device.cuda.get_device_capability()[0] < 8,
443
    "only support compiled with CUDA and cudnn version need larger than 8.1.0 and device's compute capability is at least 8.0",
444
)
445 446 447 448 449
class TestSoftmaxBF16CUDNNOp(TestSoftmaxBF16Op):
    def init_cudnn(self):
        return True


450
class TestSoftmaxAPI(unittest.TestCase):
451
    def setUp(self):
452 453 454 455 456 457
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
        self.x_np = np.random.uniform(-1.0, 1.0, [2, 3, 4, 5]).astype('float32')
458
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)
459 460 461 462
        self.executed_api()

    def executed_api(self):
        self.softmax = F.softmax
463

464
    def test_static_check(self):
465 466 467 468 469 470 471 472 473 474 475
        with paddle.fluid.framework._static_guard():
            with paddle.static.program_guard(paddle.static.Program()):
                x = paddle.static.data('X', self.x_np.shape, 'float32')
                out1 = self.softmax(x)
                m = paddle.nn.Softmax()
                out2 = m(x)
                exe = paddle.static.Executor(self.place)
                res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
            for r in res:
                np.testing.assert_allclose(out_ref, r, rtol=1e-05)
476

477
    def test_dygraph_check(self):
478
        paddle.disable_static(self.place)
479

480
        x = paddle.to_tensor(self.x_np)
481 482
        out1 = self.softmax(x)
        x = paddle.to_tensor(self.x_np)
483 484 485 486
        m = paddle.nn.Softmax()
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in [out1, out2]:
487
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
488

489 490
        out1 = self.softmax(x, axis=0)
        x = paddle.to_tensor(self.x_np)
491 492 493 494
        m = paddle.nn.Softmax(axis=0)
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=0, dtype=None)
        for r in [out1, out2]:
495
            np.testing.assert_allclose(out_ref, r.numpy(), rtol=1e-05)
496

497 498 499 500 501 502 503
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        if core.is_compiled_with_rocm():
            out = self.softmax(x, dtype=np.float32)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float32)
        else:
            out = self.softmax(x, dtype=np.float64)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float64)
504
        np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-05)
505

506
        paddle.enable_static()
507 508

    def test_error(self):
509 510 511 512 513 514 515 516 517 518 519 520 521 522
        with paddle.fluid.framework._static_guard():
            with paddle.static.program_guard(paddle.static.Program()):
                # The input type must be Variable.
                self.assertRaises(TypeError, self.softmax, 1)
                # The input dtype must be float16, float32, float64.
                x_int32 = paddle.static.data(
                    name='x_int32', shape=[2, 3], dtype='int32'
                )
                self.assertRaises(TypeError, self.softmax, x_int32)
                # support the input dtype is float16
                x_fp16 = paddle.static.data(
                    name='x_fp16', shape=[2, 3], dtype='float16'
                )
                self.softmax(x_fp16)
523 524


525 526 527 528 529
class TestSoftmaxAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        x = paddle.rand([])
        x.stop_gradient = False
530
        x.retain_grads()
531 532

        out = paddle.nn.functional.softmax(x)
533
        out.retain_grads()
534 535 536 537 538 539 540 541 542
        out.backward()
        self.assertEqual(x.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

        paddle.enable_static()

    def test_static(self):
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
        with paddle.fluid.framework._static_guard():
            main_prog = fluid.Program()
            with fluid.program_guard(main_prog, fluid.Program()):
                x = paddle.rand([])
                x.stop_gradient = False
                out = paddle.nn.functional.softmax(x)
                fluid.backward.append_backward(out)

                # Test compile shape
                self.assertEqual(x.shape, ())
                self.assertEqual(out.shape, ())

                exe = fluid.Executor()
                result = exe.run(main_prog, fetch_list=[x, out])

                # Test runtime shape
                self.assertEqual(result[0].shape, ())
                self.assertEqual(result[1].shape, ())
561 562


563 564 565
class TestSoftmaxInplaceAPI(TestSoftmaxAPI):
    def executed_api(self):
        self.softmax = F.softmax_
566 567


C
caoying03 已提交
568
if __name__ == "__main__":
Q
qijun 已提交
569
    unittest.main()