collective_global_gather_dygraph.py 2.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16 17

import numpy as np
T
tianshuo78520a 已提交
18 19 20 21
from legacy_test.test_collective_api_base import (
    TestCollectiveAPIRunnerBase,
    runtime_main,
)
22 23

import paddle
24 25
from paddle import fluid
from paddle.distributed.utils import moe_utils
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


class TestCollectiveGlobalGatherAPI(TestCollectiveAPIRunnerBase):
    def __init__(self):
        self.global_ring_id = 0

    def get_model(self, main_prog, startup_program, rank, indata=None):
        with fluid.program_guard(main_prog, startup_program):
            seed = os.getpid()
            np.random.seed(seed)
            in_feat = 2
            n_expert = 2
            world_size = 2
            tot_expert = n_expert * world_size
            local_expert_count = np.random.randint(
41 42
                1, 4, size=tot_expert
            ).astype("int")
43 44 45
            local_expert_count = paddle.to_tensor(local_expert_count)
            global_expert_count = []
            paddle.distributed.alltoall(
46 47
                paddle.split(local_expert_count, 2, axis=0), global_expert_count
            )
48 49 50
            global_expert_count = paddle.concat(global_expert_count, axis=0)
            fwd_expert_count = sum(global_expert_count)
            np.random.seed(seed)
51 52 53
            local_input_buf = np.random.rand(fwd_expert_count, in_feat).astype(
                "float32"
            )
54 55
            local_input_buf = paddle.to_tensor(local_input_buf)
            local_input_buf.stop_gradient = False
56 57 58
            output = moe_utils.global_gather(
                local_input_buf, local_expert_count, global_expert_count
            )
59 60 61 62 63 64 65 66 67
            output.stop_gradient = False
            c = output * output
            c.stop_gradient = False
            c.backward()
            return [output.numpy(), local_input_buf.grad.numpy()]


if __name__ == "__main__":
    runtime_main(TestCollectiveGlobalGatherAPI, "global_gather")