layers.html 314.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>layers &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
27
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
28 29 30 31 32
  

  
  
        <link rel="index" title="Index"
33 34 35 36
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/>
        <link rel="up" title="Fluid" href="index.html"/>
37
        <link rel="next" title="data_feeder" href="data_feeder.html"/>
38
        <link rel="prev" title="Fluid" href="index.html"/> 
39 40

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
41
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
42 43 44 45 46 47 48 49 50 51 52 53 54
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
55
  <script src="../_static/js/modernizr.min.js"></script>
56 57 58 59 60 61 62 63

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
64
      <a href="/"><img src="../_static/images/PP_w.png"></a>
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
87 88 89 90 91
<li class="toctree-l1"><a class="reference internal" href="../overview.html">V2 API Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../v2/model_configs.html">Model Configuration</a></li>
<li class="toctree-l1"><a class="reference internal" href="../v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../v2/run_logic.html">Training and Inference</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Fluid</a></li>
92 93 94 95
</ul>

        
<div role="search">
96
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
113 114 115 116 117 118 119 120 121
<li class="toctree-l1"><a class="reference internal" href="../overview.html">V2 API Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../v2/config/activation.html">Activation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/config/layer.html">Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/config/networks.html">Networks</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/config/attr.html">Parameter Attribute</a></li>
122 123
</ul>
</li>
124 125 126 127
<li class="toctree-l1"><a class="reference internal" href="../v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/data/image.html">Image Interface</a></li>
<li class="toctree-l2"><a class="reference internal" href="../v2/data/dataset.html">Dataset</a></li>
128 129
</ul>
</li>
130 131
<li class="toctree-l1"><a class="reference internal" href="../v2/run_logic.html">Training and Inference</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Fluid</a><ul class="current">
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
<li class="toctree-l2 current"><a class="current reference internal" href="#">layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="data_feeder.html">data_feeder</a></li>
<li class="toctree-l2"><a class="reference internal" href="executor.html">executor</a></li>
<li class="toctree-l2"><a class="reference internal" href="initializer.html">initializer</a></li>
<li class="toctree-l2"><a class="reference internal" href="evaluator.html">evaluator</a></li>
<li class="toctree-l2"><a class="reference internal" href="nets.html">nets</a></li>
<li class="toctree-l2"><a class="reference internal" href="optimizer.html">optimizer</a></li>
<li class="toctree-l2"><a class="reference internal" href="param_attr.html">param_attr</a></li>
<li class="toctree-l2"><a class="reference internal" href="profiler.html">profiler</a></li>
<li class="toctree-l2"><a class="reference internal" href="regularizer.html">regularizer</a></li>
<li class="toctree-l2"><a class="reference internal" href="io.html">io</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
165
        <li><a href="index.html">Fluid</a> > </li>
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
      
    <li>layers</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="layers">
<h1>layers<a class="headerlink" href="#layers" title="Permalink to this headline"></a></h1>
<div class="section" id="control-flow">
<h2>control_flow<a class="headerlink" href="#control-flow" title="Permalink to this headline"></a></h2>
<div class="section" id="split-lod-tensor">
<h3>split_lod_tensor<a class="headerlink" href="#split-lod-tensor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
184
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">split_lod_tensor</code><span class="sig-paren">(</span><em>input</em>, <em>mask</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
<dd><p><strong>split_lod_tensor</strong></p>
<p>This function takes in an input that contains the complete lod information,
and takes in a mask which is used to mask certain parts of the input.
The output is the true branch and the false branch with the mask applied to
the input at a certain level in the tensor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>tuple|list|None</em>) &#8211; The input tensor that contains complete
lod information needed to construct the output.</li>
<li><strong>mask</strong> (<em>list</em>) &#8211; A bool column vector which masks the input.</li>
<li><strong>level</strong> (<em>int</em>) &#8211; The specific lod level to rank.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The true branch of tensor as per the mask applied to input.
Variable: The false branch of tensor as per the mask applied to input.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="n">x</span><span class="o">.</span><span class="n">persistable</span> <span class="o">=</span> <span class="bp">True</span>

<span class="n">y</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="n">y</span><span class="o">.</span><span class="n">persistable</span> <span class="o">=</span> <span class="bp">True</span>

<span class="n">out_true</span><span class="p">,</span> <span class="n">out_false</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">split_lod_tensor</span><span class="p">(</span>
      <span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">y</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="n">level</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="merge-lod-tensor">
<h3>merge_lod_tensor<a class="headerlink" href="#merge-lod-tensor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
229
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">merge_lod_tensor</code><span class="sig-paren">(</span><em>in_true</em>, <em>in_false</em>, <em>x</em>, <em>mask</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
<dd><p><strong>merge_lod_tensor</strong></p>
<p>This function takes in an input <span class="math">\(x\)</span>, the True branch, the False
branch and a binary <span class="math">\(mask\)</span>. Using this information, this function
merges the True and False branches of the tensor into a single Output
at a certain lod level indiacted by <span class="math">\(level\)</span>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>in_true</strong> (<em>tuple|list|None</em>) &#8211; The True branch to be merged.</li>
<li><strong>in_false</strong> (<em>tuple|list|None</em>) &#8211; The False branch to be merged.</li>
<li><strong>x</strong> (<em>tuple|list|None</em>) &#8211; The input tensor that contains complete
lod information needed to construct the output.</li>
<li><strong>mask</strong> (<em>list</em>) &#8211; A bool column vector which masks the input.</li>
<li><strong>level</strong> (<em>int</em>) &#8211; The specific lod level to rank.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The merged output tensor.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span>
            <span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">stop_gradient</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span>
      <span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;bool&#39;</span><span class="p">,</span> <span class="n">stop_gradient</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>

<span class="n">level</span> <span class="o">=</span> <span class="mi">0</span>

<span class="n">out_true</span><span class="p">,</span> <span class="n">out_false</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">split_lod_tensor</span><span class="p">(</span>
      <span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">y</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="n">level</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">merge_lod_tensor</span><span class="p">(</span>
      <span class="n">in_true</span><span class="o">=</span><span class="n">out_true</span><span class="p">,</span> <span class="n">in_false</span><span class="o">=</span><span class="n">out_false</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">y</span><span class="p">,</span> <span class="n">x</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="n">level</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="blockguard">
<h3>BlockGuard<a class="headerlink" href="#blockguard" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
278
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">BlockGuard</code><span class="sig-paren">(</span><em>main_program</em><span class="sig-paren">)</span></dt>
279 280 281 282 283 284 285 286 287 288
<dd><p>BlockGuard class.</p>
<p>BlockGuard class is used to create a sub-block in a program by
using the Python <cite>with</cite> keyword.</p>
</dd></dl>

</div>
<div class="section" id="blockguardwithcompletion">
<h3>BlockGuardWithCompletion<a class="headerlink" href="#blockguardwithcompletion" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
289
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">BlockGuardWithCompletion</code><span class="sig-paren">(</span><em>rnn</em><span class="sig-paren">)</span></dt>
290 291 292 293 294 295 296 297 298
<dd><p>BlockGuardWithCompletion class.</p>
<p>BlockGuardWithCompletion class is used to create an op with a block in a program.</p>
</dd></dl>

</div>
<div class="section" id="staticrnnmemorylink">
<h3>StaticRNNMemoryLink<a class="headerlink" href="#staticrnnmemorylink" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
299
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">StaticRNNMemoryLink</code><span class="sig-paren">(</span><em>init</em>, <em>pre_mem</em>, <em>mem=None</em><span class="sig-paren">)</span></dt>
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
<dd><p>StaticRNNMemoryLink class.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>init</strong> &#8211; the initial variable for Memory</li>
<li><strong>init</strong> &#8211; Variable</li>
<li><strong>pre_mem</strong> &#8211; the memory variable in previous time step</li>
<li><strong>pre_mem</strong> &#8211; Variable</li>
<li><strong>mem</strong> &#8211; the memory variable in current time step</li>
<li><strong>mem</strong> &#8211; Variable</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>StaticRNNMemoryLink class is used to create a link between two
memory cells of a StaticRNN.</p>
</dd></dl>

</div>
<div class="section" id="whileguard">
<h3>WhileGuard<a class="headerlink" href="#whileguard" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
326
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">WhileGuard</code><span class="sig-paren">(</span><em>while_op</em><span class="sig-paren">)</span></dt>
327 328 329 330 331 332 333
<dd></dd></dl>

</div>
<div class="section" id="while">
<h3>While<a class="headerlink" href="#while" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
334
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">While</code><span class="sig-paren">(</span><em>cond</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
335 336 337 338 339 340 341
<dd></dd></dl>

</div>
<div class="section" id="lod-rank-table">
<h3>lod_rank_table<a class="headerlink" href="#lod-rank-table" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
342
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">lod_rank_table</code><span class="sig-paren">(</span><em>x</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
<dd><p>LoD Rank Table Operator. Given an input variable <strong>x</strong> and a level number
of LoD, this layer creates a LodRankTable object. A LoDRankTable object
contains a list of bi-element tuples. Each tuple consists of an index and
a length, both of which are int type. Refering to specified level of LoD,
the index is the sequence index number and the length representes the
sequence length. Please note that the list is ranked in descending order by
the length. The following is an example:</p>
<blockquote>
<div><div class="highlight-text"><div class="highlight"><pre><span></span>x is a LoDTensor:
    x.lod = [[0,                2, 3],
             [0,             5, 6, 7]]
    x.data = [a, b, c, d, e, f, g]

1. set level to 0:
    Create lod rank table:
        lod_rank_table_obj = lod_rank_table(x, level=0)

    Get:
        lod_rank_table_obj.items() = [(0, 2), (1, 1)]

2. set level to 1:
    Create lod rank table:
        lod_rank_table_obj = lod_rank_table(x, level=1)

    Get:
        lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
</pre></div>
</div>
</div></blockquote>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable</em>) &#8211; Input variable, a LoDTensor based which to create the lod
rank table.</li>
<li><strong>level</strong> (<em>int</em>) &#8211; Specify the LoD level, on which to create the lod rank
table.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The created LoDRankTable object.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">],</span>
                <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">lod_rank_table</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="max-sequence-len">
<h3>max_sequence_len<a class="headerlink" href="#max-sequence-len" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
405
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">max_sequence_len</code><span class="sig-paren">(</span><em>rank_table</em><span class="sig-paren">)</span></dt>
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
<dd><p>Max Sequence Len Operator. Given a LoDRankTable object, this layer
returns the max length of a batch of sequences. In fact, a LoDRankTable
object contains a list of tuples(&lt;sequence index, sequence length&gt;) and
the list is already sorted by sequence length in descending order, so the
operator just returns the sequence length of the first tuple element.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>rank_table</strong> (<em>Variable</em>) &#8211; Input variable which is a LoDRankTable object.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The max length of sequence.</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">],</span>
                <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">rank_table</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">lod_rank_table</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">max_seq_len</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">max_sequence_len</span><span class="p">(</span><span class="n">rank_table</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="topk">
<h3>topk<a class="headerlink" href="#topk" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
437
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">topk</code><span class="sig-paren">(</span><em>input</em>, <em>k</em><span class="sig-paren">)</span></dt>
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
<dd><p><strong>topk</strong></p>
<p>This function performs the operation that selects the k entries in the input
vector and outputs their values and indices as vectors. Thus topk_out[j] is
the j-th largest entry in input, and its index is topk_indices[j]</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable|list</em>) &#8211; The input tensor that has all the data.</li>
<li><strong>k</strong> (<em>int</em>) &#8211; The number of top elements that the function will pick.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><dl class="docutils">
<dt>The variable of type array that contains the k largest entries</dt>
<dd><p class="first last">from input.</p>
</dd>
<dt>Variable: The variable of type array that contains the indices of k</dt>
<dd><p class="first last">largest entries from input.</p>
</dd>
</dl>
</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">])</span>
<span class="n">k</span> <span class="o">=</span> <span class="mi">5</span>
<span class="n">array</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">topk</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">k</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="lod-tensor-to-array">
<h3>lod_tensor_to_array<a class="headerlink" href="#lod-tensor-to-array" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
481
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">lod_tensor_to_array</code><span class="sig-paren">(</span><em>x</em>, <em>table</em><span class="sig-paren">)</span></dt>
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
<dd><p>Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable|list</em>) &#8211; The LOD tensor to be converted to a LOD tensor array.</li>
<li><strong>table</strong> (<em>ParamAttr|list</em>) &#8211; The variable that stores the level of lod
which is ordered by sequence length in
descending order.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><dl class="docutils">
<dt>The variable of type array that has been converted from a</dt>
<dd><p class="first last">tensor.</p>
</dd>
</dl>
</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">])</span>
<span class="n">table</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lod_rank_table</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">array</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lod_tensor_to_array</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">table</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="array-to-lod-tensor">
<h3>array_to_lod_tensor<a class="headerlink" href="#array-to-lod-tensor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
521
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">array_to_lod_tensor</code><span class="sig-paren">(</span><em>x</em>, <em>table</em><span class="sig-paren">)</span></dt>
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
<dd><p>Convert a LoD_Tensor_Aarry to an LoDTensor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable|list</em>) &#8211; The lod tensor array to be converted to a tensor.</li>
<li><strong>table</strong> (<em>ParamAttr|list</em>) &#8211; The variable that stores the level of lod
which is ordered by sequence length in
descending order.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><dl class="docutils">
<dt>The variable of type tensor that has been converted</dt>
<dd><p class="first last">from an array.</p>
</dd>
</dl>
</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">])</span>
<span class="n">table</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lod_rank_table</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">array</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lod_tensor_to_array</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">table</span><span class="p">)</span>
<span class="n">lod_tensor</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">array_to_lod_tensor</span><span class="p">(</span><span class="n">array</span><span class="p">,</span> <span class="n">table</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="increment">
<h3>increment<a class="headerlink" href="#increment" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
562
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">increment</code><span class="sig-paren">(</span><em>x</em>, <em>value=1.0</em>, <em>in_place=True</em><span class="sig-paren">)</span></dt>
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
<dd><p>This function performs an operation that increments each value in the
input <span class="math">\(x\)</span> by an amount: <span class="math">\(value\)</span> as mentioned in the input
parameter. This operation is performed in-place by default.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable|list</em>) &#8211; The tensor that has the input values.</li>
<li><strong>value</strong> (<em>float</em>) &#8211; The amount by which the values should be incremented.</li>
<li><strong>in_place</strong> (<em>bool</em>) &#8211; If the increment should be performed in-place.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><dl class="docutils">
<dt>The tensor variable storing the transformation of</dt>
<dd><p class="first last">element-wise increment of each value in the input.</p>
</dd>
</dl>
</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;data&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">increment</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mf">3.0</span><span class="p">,</span> <span class="n">in_place</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="array-write">
<h3>array_write<a class="headerlink" href="#array-write" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
602
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">array_write</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>array=None</em><span class="sig-paren">)</span></dt>
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
<dd><p>This function writes the given input variable to the specified position
indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
returned.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable|list</em>) &#8211; The input tensor from which the data will be read.</li>
<li><strong>i</strong> (<em>Variable|list</em>) &#8211; The index of the output LOD_TENSOR_ARRAY, pointing to
the position to which the input tensor will be
written.</li>
<li><strong>array</strong> (<em>Variable|list</em>) &#8211; The output LOD_TENSOR_ARRAY to which the input
tensor will be written. If this parameter is
NONE, a new LOD_TENSOR_ARRAY will be created and
returned.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The output LOD_TENSOR_ARRAY where the input tensor is written.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
</dd></dl>

</div>
<div class="section" id="create-array">
<h3>create_array<a class="headerlink" href="#create-array" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
639
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">create_array</code><span class="sig-paren">(</span><em>dtype</em><span class="sig-paren">)</span></dt>
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
<dd><p>This function creates an array of type <span class="math">\(LOD_TENSOR_ARRAY\)</span> using the
LayerHelper.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>dtype</strong> (<em>int|float</em>) &#8211; The data type of the elements in the array.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The tensor variable storing the elements of data type.</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">create_array</span><span class="p">(</span><span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="less-than">
<h3>less_than<a class="headerlink" href="#less-than" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
665
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">less_than</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>cond=None</em>, <em>**ignored</em><span class="sig-paren">)</span></dt>
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
<dd><p><strong>Less than</strong></p>
<p>This layer returns the truth value of <span class="math">\(x &lt; y\)</span> elementwise.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable</em>) &#8211; First operand of <em>less_than</em></li>
<li><strong>y</strong> (<em>Variable</em>) &#8211; Second operand of <em>less_than</em></li>
<li><strong>cond</strong> (<em>Variable|None</em>) &#8211; Optional output variable to store the result of <em>less_than</em></li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the output of <em>less_than</em>.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">less</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">less_than</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">label</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">limit</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="array-read">
<h3>array_read<a class="headerlink" href="#array-read" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
698
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">array_read</code><span class="sig-paren">(</span><em>array</em>, <em>i</em><span class="sig-paren">)</span></dt>
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
<dd><p>This function performs the operation to read the data in as an
LOD_TENSOR_ARRAY.
:param array: The input tensor that will be written to an array.
:type array: Variable|list
:param i: The subscript index in tensor array, that points the</p>
<blockquote>
<div>place where data will be written to.</div></blockquote>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">The tensor type variable that has the data written to it.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
</dd></dl>

</div>
<div class="section" id="shrink-memory">
<h3>shrink_memory<a class="headerlink" href="#shrink-memory" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
724
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">shrink_memory</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>table</em><span class="sig-paren">)</span></dt>
725 726 727 728 729 730 731 732 733
<dd><p>This function creates an operator to shrink_rnn_memory using the RankTable
as mentioned in the input parameter.</p>
</dd></dl>

</div>
<div class="section" id="array-length">
<h3>array_length<a class="headerlink" href="#array-length" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
734
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">array_length</code><span class="sig-paren">(</span><em>array</em><span class="sig-paren">)</span></dt>
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
<dd><p>This function performs the operation to find the length of the input
LOD_TENSOR_ARRAY.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>array</strong> (<em>LOD_TENSOR_ARRAY</em>) &#8211; The input array that will be used
to compute the length.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The length of the input LoDTensorArray.</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
</dd></dl>

</div>
<div class="section" id="ifelse">
<h3>IfElse<a class="headerlink" href="#ifelse" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
758
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">IfElse</code><span class="sig-paren">(</span><em>cond</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
759 760 761 762 763 764 765
<dd></dd></dl>

</div>
<div class="section" id="dynamicrnn">
<h3>DynamicRNN<a class="headerlink" href="#dynamicrnn" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
766
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">DynamicRNN</code><span class="sig-paren">(</span><em>name=None</em><span class="sig-paren">)</span></dt>
767 768 769 770 771 772 773
<dd></dd></dl>

</div>
<div class="section" id="conditionalblock">
<h3>ConditionalBlock<a class="headerlink" href="#conditionalblock" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
774
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">ConditionalBlock</code><span class="sig-paren">(</span><em>inputs</em>, <em>is_scalar_condition=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
775 776 777 778 779 780 781
<dd></dd></dl>

</div>
<div class="section" id="staticrnn">
<h3>StaticRNN<a class="headerlink" href="#staticrnn" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
782
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">StaticRNN</code><span class="sig-paren">(</span><em>name=None</em><span class="sig-paren">)</span></dt>
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
<dd><p>StaticRNN class.</p>
<p>StaticRNN class is used to create a StaticRNN. The RNN will have its
own parameters like inputs, outputs, memories, status and length.</p>
<dl class="method">
<dt>
<code class="descname">memory</code><span class="sig-paren">(</span><em>init=None</em>, <em>shape=None</em>, <em>batch_ref=None</em>, <em>init_value=0.0</em>, <em>init_batch_dim_idx=0</em>, <em>ref_batch_dim_idx=1</em><span class="sig-paren">)</span></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>init</strong> &#8211; boot memory, if not set, a shape, batch_ref must be provided</li>
<li><strong>shape</strong> &#8211; shape of the boot memory</li>
<li><strong>batch_ref</strong> &#8211; batch size reference variable</li>
<li><strong>init_value</strong> &#8211; the init value of boot memory</li>
<li><strong>init_batch_dim_idx</strong> &#8211; the index of batch size in init&#8217;s dimension</li>
<li><strong>ref_batch_dim_idx</strong> &#8211; the index of batch size in batch_ref&#8217;s dimension</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</dd></dl>

</div>
<div class="section" id="reorder-lod-tensor-by-rank">
<h3>reorder_lod_tensor_by_rank<a class="headerlink" href="#reorder-lod-tensor-by-rank" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
814
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reorder_lod_tensor_by_rank</code><span class="sig-paren">(</span><em>x</em>, <em>rank_table</em><span class="sig-paren">)</span></dt>
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
<dd><p>ReorderLoDTensorByRankTable operator.</p>
<p>Input(X) is a batch of sequences. Input(RankTable) stores new orders of the
input sequence batch. The reorder_lod_tensor_by_rank operator reorders the
Input(X) according to the information provided by Input(RankTable).</p>
<p>For example:</p>
<p>If the indices stored in the Input(RankTable) are [3, 0, 2, 1], the
Input(X) will be reordered that the fourth sequence in Input(X) will become the
first one, and then followed by the original first, third, and the second one.</p>
<p>This is:
X = [Seq0, Seq1, Seq2, Seq3]. The indices in RankTable are [3, 0, 2, 1].
Out =  [Seq3, Seq0, Seq2, Seq1] with a new LoD information.</p>
<p>If the LoD information of Input(X) is empty, this means Input(X) is not sequence
data. This is also identical to a batch of sequences where each sequence has a
fixed length 1. In this case, the reorder_lod_tensor_by_rank operator reorders
each slice of Input(X) along the first axis according to Input(RankTable).</p>
<p>This is:
X = [Slice0, Slice1, Slice2, Slice3] and its LoD information is empty. The
indices in RankTable are [3, 0, 2, 1].
Out = [Slice3, Slice0, Slice2, Slice1] with no LoD information is appended.</p>
<p>NOTE: This operator sorts Input(X) according to a given LoDRankTable which does
not need to be calculated according to Input(X). It can be calculated according
to another different sequence, and then this operator sorts Input(X) according
to the given LoDRankTable.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (LoDTensor), the input lod tensor to be reordered according to Input(RankTable).
Duplicable: False  Optional: False</li>
<li><strong>rank_table</strong> &#8211; (LoDRankTable), the rank table according to which Input(X) is reordered.
Duplicable: False  Optional: False</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(LoDTensor), the reordered lod tensor.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="paralleldo">
<h3>ParallelDo<a class="headerlink" href="#paralleldo" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
862
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">ParallelDo</code><span class="sig-paren">(</span><em>places</em>, <em>use_nccl=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
863 864 865 866 867 868 869 870 871
<dd><p>ParallelDo class.</p>
<p>ParallelDo class is used to create a ParallelDo.</p>
</dd></dl>

</div>
<div class="section" id="print">
<h3>Print<a class="headerlink" href="#print" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
872
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">Print</code><span class="sig-paren">(</span><em>input</em>, <em>first_n=-1</em>, <em>message=None</em>, <em>summarize=-1</em>, <em>print_tensor_name=True</em>, <em>print_tensor_type=True</em>, <em>print_tensor_shape=True</em>, <em>print_tensor_lod=True</em>, <em>print_phase='both'</em><span class="sig-paren">)</span></dt>
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
<dd><p><strong>Print operator</strong></p>
<p>This creates a print op that will print when a tensor is accessed.</p>
<p>Wraps the tensor passed in so that whenever that a tensor is accessed,
the message <cite>message</cite> is printed, along with the current value of the
tensor <cite>t</cite>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; A Tensor to print.</li>
<li><strong>summarize</strong> (<em>int</em>) &#8211; Print this number of elements in the tensor, will print
all if left is negative.</li>
<li><strong>message</strong> (<em>str</em>) &#8211; A string message to print as a prefix.</li>
<li><strong>first_n</strong> (<em>int</em>) &#8211; Only log <cite>first_n</cite> number of times.</li>
<li><strong>print_tensor_name</strong> (<em>bool</em>) &#8211; Print the tensor name.</li>
<li><strong>print_tensor_type</strong> (<em>bool</em>) &#8211; Print the tensor type.</li>
<li><strong>print_tensor_shape</strong> (<em>bool</em>) &#8211; Print the tensor shape.</li>
<li><strong>print_tensor_lod</strong> (<em>bool</em>) &#8211; Print the tensor lod.</li>
892
<li><strong>print_phase</strong> (<em>str</em>) &#8211; Which phase to displace, including &#8216;forward&#8217;,
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
&#8216;backward&#8217; and &#8216;both&#8217;. If set to &#8216;backward&#8217; or &#8216;both&#8217;, will
print the gradients of input tensor.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Output tensor, same data with input tensor.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span>
</pre></div>
</div>
<p>value = some_layer(...)
Print(value, summarize=10,</p>
<blockquote>
<div>message=&#8221;The content of some_layer: &#8221;)</div></blockquote>
</dd></dl>

</div>
</div>
<div class="section" id="device">
<h2>device<a class="headerlink" href="#device" title="Permalink to this headline"></a></h2>
<div class="section" id="get-places">
<h3>get_places<a class="headerlink" href="#get-places" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
924
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">get_places</code><span class="sig-paren">(</span><em>device_count=None</em>, <em>device_type=None</em><span class="sig-paren">)</span></dt>
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
<dd><p>Returns a list of places based on flags. The list will be used for parallel
execution.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>device_count</strong> (<em>INT</em>) &#8211; device count</li>
<li><strong>device_type</strong> (<em>STRING</em>) &#8211; device type</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">vector of Place</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="io">
<h2>io<a class="headerlink" href="#io" title="Permalink to this headline"></a></h2>
<div class="section" id="data">
<h3>data<a class="headerlink" href="#data" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
952
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">data</code><span class="sig-paren">(</span><em>name</em>, <em>shape</em>, <em>append_batch_size=True</em>, <em>dtype='float32'</em>, <em>lod_level=0</em>, <em>type=VarType.LOD_TENSOR</em>, <em>stop_gradient=True</em><span class="sig-paren">)</span></dt>
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
<dd><p><strong>Data Layer</strong></p>
<p>This function takes in the input and based on whether data has
to be returned back as a minibatch, it creates the global variable by using
the helper functions. The global variables can be accessed by all the
following operators in the graph.</p>
<p>All the input variables of this function are passed in as local variables
to the LayerHelper constructor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>str</em>) &#8211; The name/alias of the function</li>
<li><strong>shape</strong> (<em>list</em>) &#8211; Tuple declaring the shape.</li>
<li><strong>append_batch_size</strong> (<em>bool</em>) &#8211; Whether or not to append the data as a batch.</li>
<li><strong>dtype</strong> (<em>int|float</em>) &#8211; The type of data : float32, float_16, int etc</li>
<li><strong>type</strong> (<em>VarType</em>) &#8211; The output type. By default it is LOD_TENSOR.</li>
<li><strong>lod_level</strong> (<em>int</em>) &#8211; The LoD Level. 0 means the input data is not a sequence.</li>
<li><strong>main_program</strong> (<em>Program</em>) &#8211; Name of the main program that calls this</li>
<li><strong>startup_program</strong> (<em>Program</em>) &#8211; Name of the startup program</li>
<li><strong>stop_gradient</strong> (<em>bool</em>) &#8211; A boolean that mentions whether gradient should flow.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The global variable that gives access to the data.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">784</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="blockguardserv">
<h3>BlockGuardServ<a class="headerlink" href="#blockguardserv" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
996
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">BlockGuardServ</code><span class="sig-paren">(</span><em>server</em><span class="sig-paren">)</span></dt>
997 998 999 1000 1001 1002 1003 1004 1005
<dd><p>BlockGuardServ class.</p>
<p>BlockGuardServ class is used to create an op with a block in a program.</p>
</dd></dl>

</div>
<div class="section" id="listenandserv">
<h3>ListenAndServ<a class="headerlink" href="#listenandserv" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
1006
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">ListenAndServ</code><span class="sig-paren">(</span><em>endpoint</em>, <em>fan_in=1</em>, <em>optimizer_mode=True</em><span class="sig-paren">)</span></dt>
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
<dd><p>ListenAndServ class.</p>
<p>ListenAndServ class is used to wrap listen_and_serv op to create a server
which can receive variables from clients and run a block.</p>
</dd></dl>

</div>
<div class="section" id="send">
<h3>Send<a class="headerlink" href="#send" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1017
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">Send</code><span class="sig-paren">(</span><em>endpoints</em>, <em>send_vars</em>, <em>get_vars</em><span class="sig-paren">)</span></dt>
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
<dd><p>Send layer</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>endpoints</strong> &#8211; comma seperated IP:PORT pairs in the order
of send_vars to send</li>
<li><strong>send_vars</strong> &#8211; vars to send</li>
<li><strong>get_vars</strong> &#8211; vars to get from server after send completes.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>Send variables to the server side, and get vars from server
side when server have finished running server side program.</p>
</dd></dl>

</div>
</div>
<div class="section" id="nn">
<h2>nn<a class="headerlink" href="#nn" title="Permalink to this headline"></a></h2>
<div class="section" id="fc">
<h3>fc<a class="headerlink" href="#fc" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1045
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">fc</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>num_flatten_dims=1</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
<dd><p><strong>Fully Connected Layer</strong></p>
<p>The fully connected layer can take multiple tensors as its inputs. It
creates a variable (one for each input tensor) called weights for each
input tensor, which represents a fully connected weight matrix from
each input unit to each output unit. The fully connected layer
multiplies each input tensor with its coresponding weight to produce
an output Tensor. If multiple input tensors are given, the results of
multiple multiplications will be sumed up. If bias_attr is not None,
a biases variable will be created and added to the output. Finally,
if activation is not None, it will be applied to the output as well.</p>
<p>This process can be formulated as follows:</p>
<div class="math">
1058
\[Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})\]</div>
1059 1060 1061 1062 1063 1064
<p>In the above equation:</p>
<ul class="simple">
<li><span class="math">\(N\)</span>: Number of the input.</li>
<li><span class="math">\(X_i\)</span>: The input tensor.</li>
<li><span class="math">\(W\)</span>: The weights created by this layer.</li>
<li><span class="math">\(b\)</span>: The bias parameter created by this layer (if needed).</li>
1065
<li><span class="math">\(Act\)</span>: The activation function.</li>
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
<li><span class="math">\(Out\)</span>: The output tensor.</li>
</ul>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable|list</em>) &#8211; The input tensor(s) to the fully connected layer.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The number of output units in the fully connected layer.</li>
<li><strong>num_flatten_dims</strong> (<em>int</em>) &#8211; The fc layer can accept an input tensor with more
than two dimensions. If this happens, the
multidimensional tensor will first be flattened
into a 2-dimensional matrix. The parameter
<cite>num_flatten_dims</cite> determines how the input tensor
is flattened: the first <cite>num_flatten_dims</cite>
(inclusive, index starts from 1) dimensions will
be flatten to form the first dimension of the
final matrix (height of the matrix), and the rest
<cite>rank(X) - num_flatten_dims</cite> dimensions are
flattened to form the second dimension of the
final matrix (width of the matrix). For example,
suppose <cite>X</cite> is a 6-dimensional tensor with a shape
[2, 3, 4, 5, 6], and <cite>num_flatten_dims</cite> = 3. Then,
the flattened matrix will have a shape
[2 x 3 x 4, 5 x 6] = [24, 30]. By default,
<cite>num_flatten_dims</cite> is set to 1.</li>
<li><strong>param_attr</strong> (<em>ParamAttr|list</em>) &#8211; The parameter attribute for learnable
parameters/weights of the fully connected
layer.</li>
<li><strong>param_initializer</strong> (<em>ParamAttr|list</em>) &#8211; The initializer used for the
weight/parameter. If set None,
XavierInitializer() will be used.</li>
<li><strong>bias_attr</strong> (<em>ParamAttr|list</em>) &#8211; The parameter attribute for the bias parameter
for this layer. If set None, no bias will be
added to the output units.</li>
<li><strong>bias_initializer</strong> (<em>ParamAttr|list</em>) &#8211; The initializer used for the bias.
If set None, then ConstantInitializer()
will be used.</li>
<li><strong>act</strong> (<em>str</em>) &#8211; Activation to be applied to the output of the fully connected
layer.</li>
<li><strong>name</strong> (<em>str</em>) &#8211; Name/alias of the fully connected layer.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The output tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first">Variable</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><code class="xref py py-exc docutils literal"><span class="pre">ValueError</span></code> &#8211; If rank of the input tensor is less than 2.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;data&quot;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s2">&quot;float32&quot;</span><span class="p">)</span>
<span class="n">fc</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;tanh&quot;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="embedding">
<h3>embedding<a class="headerlink" href="#embedding" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1133
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">embedding</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>is_sparse=False</em>, <em>padding_idx=None</em>, <em>param_attr=None</em>, <em>dtype='float32'</em><span class="sig-paren">)</span></dt>
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
<dd><p><strong>Embedding Layer</strong></p>
<p>This layer is used to lookup embeddings of IDs, provided by <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>, in
a lookup table. The result of this lookup is the embedding of each ID in the
<code class="xref py py-attr docutils literal"><span class="pre">input</span></code>.</p>
<p>All the input variables are passed in as local variables to the LayerHelper
constructor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The tensor variable containing the IDs.</li>
<li><strong>size</strong> (<em>tuple|list</em>) &#8211; The shape of the look up table parameter. It should
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.</li>
<li><strong>is_sparse</strong> (<em>bool</em>) &#8211; The flag indicating whether to use sparse update.</li>
<li><strong>padding_idx</strong> (<em>int|long|None</em>) &#8211; If <code class="xref py py-attr docutils literal"><span class="pre">None</span></code>, it makes no effect to lookup.
Otherwise the given <code class="xref py py-attr docutils literal"><span class="pre">padding_idx</span></code> indicates padding the output
with zeros whenever lookup encounters it in <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>. If
<span class="math">\(padding_idx &lt; 0\)</span>, the padding_idx to use in lookup is
<span class="math">\(size[0] + dim\)</span>.</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) &#8211; Parameters for this layer</li>
1156
<li><strong>dtype</strong> (<em>np.dtype|core.VarDesc.VarType|str</em>) &#8211; The type of data : float32, float_16, int etc</li>
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the embeddings of the                   supplied inputs.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">dict_size</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">ids</span><span class="p">)</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;ids&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">fc</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="p">[</span><span class="n">dict_size</span><span class="p">,</span> <span class="mi">16</span><span class="p">])</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="dynamic-lstm">
<h3>dynamic_lstm<a class="headerlink" href="#dynamic-lstm" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1181
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">dynamic_lstm</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_peepholes=True</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>cell_activation='tanh'</em>, <em>candidate_activation='tanh'</em>, <em>dtype='float32'</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
<dd><p><strong>Dynamic LSTM Layer</strong></p>
<p>The defalut implementation is diagonal/peephole connection
(<a class="reference external" href="https://arxiv.org/pdf/1402.1128.pdf">https://arxiv.org/pdf/1402.1128.pdf</a>), the formula is as follows:</p>
<div class="math">
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} &amp; = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)\\c_t &amp; = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t &amp; = o_t \odot act_h(c_t)\end{aligned}\end{align} \]</div>
<p>where the <span class="math">\(W\)</span> terms denote weight matrices (e.g. <span class="math">\(W_{xi}\)</span> is
the matrix of weights from the input gate to the input), <span class="math">\(W_{ic},     W_{fc}, W_{oc}\)</span> are diagonal weight matrices for peephole connections. In
our implementation, we use vectors to reprenset these diagonal weight
matrices. The <span class="math">\(b\)</span> terms denote bias vectors (<span class="math">\(b_i\)</span> is the input
gate bias vector), <span class="math">\(\sigma\)</span> is the non-linear activations, such as
logistic sigmoid function, and <span class="math">\(i, f, o\)</span> and <span class="math">\(c\)</span> are the input
gate, forget gate, output gate, and cell activation vectors, respectively,
all of which have the same size as the cell output activation vector <span class="math">\(h\)</span>.</p>
<p>The <span class="math">\(\odot\)</span> is the element-wise product of the vectors. <span class="math">\(act_g\)</span>
and <span class="math">\(act_h\)</span> are the cell input and cell output activation functions
and <cite>tanh</cite> is usually used for them. <span class="math">\(\tilde{c_t}\)</span> is also called
candidate hidden state, which is computed based on the current input and
the previous hidden state.</p>
<p>Set <cite>use_peepholes</cite> to <cite>False</cite> to disable peephole connection. The formula
is omitted here, please refer to the paper
<a class="reference external" href="http://www.bioinf.jku.at/publications/older/2604.pdf">http://www.bioinf.jku.at/publications/older/2604.pdf</a> for details.</p>
<p>Note that these <span class="math">\(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\)</span>
operations on the input <span class="math">\(x_{t}\)</span> are NOT included in this operator.
Users can choose to use fully-connect layer before LSTM layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input of dynamic_lstm layer, which supports
variable-time length input sequence. The underlying
tensor in this Variable is a matrix with shape
(T X 4D), where T is the total time steps in this
mini-batch, D is the hidden size.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; 4 * hidden size.</li>
<li><strong>param_attr</strong> (<em>ParamAttr|None</em>) &#8211; <p>The parameter attribute for the learnable
hidden-hidden weights.</p>
<ul>
<li>Weights = {<span class="math">\(W_{ch}, W_{ih},                                                 W_{fh}, W_{oh}\)</span>}</li>
<li>The shape is (D x 4D), where D is the hidden
size.</li>
</ul>
</li>
<li><strong>bias_attr</strong> (<em>ParamAttr|None</em>) &#8211; <p>The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting <cite>use_peepholes</cite> to <cite>True</cite>.</p>
<ol class="arabic">
<li><cite>use_peepholes = False</cite></li>
</ol>
<blockquote>
<div><ul>
<li>Biases = {<span class="math">\(b_c, b_i, b_f, b_o\)</span>}.</li>
<li>The shape is (1 x 4D).</li>
</ul>
</div></blockquote>
<ol class="arabic" start="2">
<li><cite>use_peepholes = True</cite></li>
</ol>
<blockquote>
<div><ul>
<li>Biases = { <span class="math">\(b_c, b_i, b_f, b_o, W_{ic},                                                  W_{fc}, W_{oc}\)</span>}.</li>
<li>The shape is (1 x 7D).</li>
</ul>
</div></blockquote>
</li>
<li><strong>use_peepholes</strong> (<em>bool</em>) &#8211; Whether to enable diagonal/peephole connections,
default <cite>True</cite>.</li>
<li><strong>is_reverse</strong> (<em>bool</em>) &#8211; Whether to compute reversed LSTM, default <cite>False</cite>.</li>
<li><strong>gate_activation</strong> (<em>str</em>) &#8211; The activation for input gate, forget gate and
output gate. Choices = [&#8220;sigmoid&#8221;, &#8220;tanh&#8221;, &#8220;relu&#8221;,
&#8220;identity&#8221;], default &#8220;sigmoid&#8221;.</li>
<li><strong>cell_activation</strong> (<em>str</em>) &#8211; The activation for cell output. Choices = [&#8220;sigmoid&#8221;,
&#8220;tanh&#8221;, &#8220;relu&#8221;, &#8220;identity&#8221;], default &#8220;tanh&#8221;.</li>
<li><strong>candidate_activation</strong> (<em>str</em>) &#8211; The activation for candidate hidden state.
Choices = [&#8220;sigmoid&#8221;, &#8220;tanh&#8221;, &#8220;relu&#8221;, &#8220;identity&#8221;],
default &#8220;tanh&#8221;.</li>
<li><strong>dtype</strong> (<em>str</em>) &#8211; Data type. Choices = [&#8220;float32&#8221;, &#8220;float64&#8221;], default &#8220;float32&#8221;.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The hidden state, and cell state of LSTM. The shape of both         is (T x D), and lod is the same with the <cite>input</cite>.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">tuple</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">hidden_dim</span> <span class="o">=</span> <span class="mi">512</span>
<span class="n">forward_proj</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input_seq</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">hidden_dim</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span>
                               <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">bias_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
<span class="n">forward</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">dynamic_lstm</span><span class="p">(</span>
    <span class="nb">input</span><span class="o">=</span><span class="n">forward_proj</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">hidden_dim</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span> <span class="n">use_peepholes</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="dynamic-lstmp">
<h3>dynamic_lstmp<a class="headerlink" href="#dynamic-lstmp" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1288
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">dynamic_lstmp</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>proj_size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_peepholes=True</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>cell_activation='tanh'</em>, <em>candidate_activation='tanh'</em>, <em>proj_activation='tanh'</em>, <em>dtype='float32'</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
<dd><p><strong>Dynamic LSTMP Layer</strong></p>
<p>LSTMP (LSTM with recurrent projection) layer has a separate projection
layer after the LSTM layer, projecting the original hidden state to a
lower-dimensional one, which is proposed to reduce the number of total
parameters and furthermore computational complexity for the LSTM,
espeacially for the case that the size of output units is relative
large (<a class="reference external" href="https://research.google.com/pubs/archive/43905.pdf">https://research.google.com/pubs/archive/43905.pdf</a>).</p>
<p>The formula is as follows:</p>
<div class="math">
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} &amp; = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)\\o_t &amp; = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)\\c_t &amp; = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t &amp; = o_t \odot act_h(c_t)\\r_t &amp; = \overline{act_h}(W_{rh}h_t)\end{aligned}\end{align} \]</div>
<p>In the above formula:</p>
<ul class="simple">
<li><span class="math">\(W\)</span>: Denotes weight matrices (e.g. <span class="math">\(W_{xi}\)</span> is           the matrix of weights from the input gate to the input).</li>
<li><span class="math">\(W_{ic}\)</span>, <span class="math">\(W_{fc}\)</span>, <span class="math">\(W_{oc}\)</span>: Diagonal weight           matrices for peephole connections. In our implementation,           we use vectors to reprenset these diagonal weight matrices.</li>
<li><span class="math">\(b\)</span>: Denotes bias vectors (e.g. <span class="math">\(b_i\)</span> is the input gate           bias vector).</li>
<li><span class="math">\(\sigma\)</span>: The activation, such as logistic sigmoid function.</li>
<li><span class="math">\(i, f, o\)</span> and <span class="math">\(c\)</span>: The input gate, forget gate, output           gate, and cell activation vectors, respectively, all of which have           the same size as the cell output activation vector <span class="math">\(h\)</span>.</li>
<li><span class="math">\(h\)</span>: The hidden state.</li>
<li><span class="math">\(r\)</span>: The recurrent projection of the hidden state.</li>
<li><span class="math">\(\tilde{c_t}\)</span>: The candidate hidden state, whose           computation is based on the current input and previous hidden state.</li>
<li><span class="math">\(\odot\)</span>: The element-wise product of the vectors.</li>
<li><span class="math">\(act_g\)</span> and <span class="math">\(act_h\)</span>: The cell input and cell output           activation functions and <cite>tanh</cite> is usually used for them.</li>
<li><span class="math">\(\overline{act_h}\)</span>: The activation function for the projection           output, usually using <cite>identity</cite> or same as <span class="math">\(act_h\)</span>.</li>
</ul>
<p>Set <cite>use_peepholes</cite> to <cite>False</cite> to disable peephole connection. The formula
is omitted here, please refer to the paper
<a class="reference external" href="http://www.bioinf.jku.at/publications/older/2604.pdf">http://www.bioinf.jku.at/publications/older/2604.pdf</a> for details.</p>
<p>Note that these <span class="math">\(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\)</span>
operations on the input <span class="math">\(x_{t}\)</span> are NOT included in this operator.
Users can choose to use fully-connected layer before LSTMP layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input of dynamic_lstmp layer, which supports
variable-time length input sequence. The underlying
tensor in this Variable is a matrix with shape
(T X 4D), where T is the total time steps in this
mini-batch, D is the hidden size.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; 4 * hidden size.</li>
<li><strong>proj_size</strong> (<em>int</em>) &#8211; The size of projection output.</li>
<li><strong>param_attr</strong> (<em>ParamAttr|None</em>) &#8211; <p>The parameter attribute for the learnable
hidden-hidden weight and projection weight.</p>
<ul>
<li>Hidden-hidden weight = {<span class="math">\(W_{ch}, W_{ih},                                                 W_{fh}, W_{oh}\)</span>}.</li>
<li>The shape of hidden-hidden weight is (P x 4D),
where P is the projection size and D the hidden
size.</li>
<li>Projection weight = {<span class="math">\(W_{rh}\)</span>}.</li>
<li>The shape of projection weight is (D x P).</li>
</ul>
</li>
<li><strong>bias_attr</strong> (<em>ParamAttr|None</em>) &#8211; <p>The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting <cite>use_peepholes</cite> to <cite>True</cite>.</p>
<ol class="arabic">
<li><cite>use_peepholes = False</cite></li>
</ol>
<blockquote>
<div><ul>
<li>Biases = {<span class="math">\(b_c, b_i, b_f, b_o\)</span>}.</li>
<li>The shape is (1 x 4D).</li>
</ul>
</div></blockquote>
<ol class="arabic" start="2">
<li><cite>use_peepholes = True</cite></li>
</ol>
<blockquote>
<div><ul>
<li>Biases = { <span class="math">\(b_c, b_i, b_f, b_o, W_{ic},                                                  W_{fc}, W_{oc}\)</span>}.</li>
<li>The shape is (1 x 7D).</li>
</ul>
</div></blockquote>
</li>
<li><strong>use_peepholes</strong> (<em>bool</em>) &#8211; Whether to enable diagonal/peephole connections,
default <cite>True</cite>.</li>
<li><strong>is_reverse</strong> (<em>bool</em>) &#8211; Whether to compute reversed LSTM, default <cite>False</cite>.</li>
<li><strong>gate_activation</strong> (<em>str</em>) &#8211; The activation for input gate, forget gate and
output gate. Choices = [&#8220;sigmoid&#8221;, &#8220;tanh&#8221;, &#8220;relu&#8221;,
&#8220;identity&#8221;], default &#8220;sigmoid&#8221;.</li>
<li><strong>cell_activation</strong> (<em>str</em>) &#8211; The activation for cell output. Choices = [&#8220;sigmoid&#8221;,
&#8220;tanh&#8221;, &#8220;relu&#8221;, &#8220;identity&#8221;], default &#8220;tanh&#8221;.</li>
<li><strong>candidate_activation</strong> (<em>str</em>) &#8211; The activation for candidate hidden state.
Choices = [&#8220;sigmoid&#8221;, &#8220;tanh&#8221;, &#8220;relu&#8221;, &#8220;identity&#8221;],
default &#8220;tanh&#8221;.</li>
<li><strong>proj_activation</strong> (<em>str</em>) &#8211; The activation for projection output.
Choices = [&#8220;sigmoid&#8221;, &#8220;tanh&#8221;, &#8220;relu&#8221;, &#8220;identity&#8221;],
default &#8220;tanh&#8221;.</li>
<li><strong>dtype</strong> (<em>str</em>) &#8211; Data type. Choices = [&#8220;float32&#8221;, &#8220;float64&#8221;], default &#8220;float32&#8221;.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The projection of hidden state, and cell state of LSTMP. The                shape of projection is (T x P), for the cell state which is                (T x D), and both LoD is the same with the <cite>input</cite>.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">tuple</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">hidden_dim</span><span class="p">,</span> <span class="n">proj_dim</span> <span class="o">=</span> <span class="mi">512</span><span class="p">,</span> <span class="mi">256</span>
<span class="n">fc_out</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">input_seq</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">hidden_dim</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span>
                         <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">bias_attr</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
<span class="n">proj_out</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">dynamic_lstmp</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">fc_out</span><span class="p">,</span>
                                         <span class="n">size</span><span class="o">=</span><span class="n">hidden_dim</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span>
                                         <span class="n">proj_size</span><span class="o">=</span><span class="n">proj_dim</span><span class="p">,</span>
                                         <span class="n">use_peepholes</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
                                         <span class="n">is_reverse</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span>
                                         <span class="n">cell_activation</span><span class="o">=</span><span class="s2">&quot;tanh&quot;</span><span class="p">,</span>
                                         <span class="n">proj_activation</span><span class="o">=</span><span class="s2">&quot;tanh&quot;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="dynamic-gru">
<h3>dynamic_gru<a class="headerlink" href="#dynamic-gru" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1413
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">dynamic_gru</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>candidate_activation='tanh'</em>, <em>h_0=None</em><span class="sig-paren">)</span></dt>
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
<dd><p><strong>Dynamic GRU Layer</strong></p>
<p>Refer to <a class="reference external" href="https://arxiv.org/abs/1412.3555">Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling</a></p>
<p>The formula is as follows:</p>
<div class="math">
\[ \begin{align}\begin{aligned}u_t &amp; = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)\\r_t &amp; = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)\\\tilde{h_t} &amp; = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)\\h_t &amp; = (1-u_t) \odot h_{t-1} + u_t \odot \tilde{h_t}\end{aligned}\end{align} \]</div>
<p>The <span class="math">\(\odot\)</span> is the element-wise product of the vectors. <span class="math">\(act_g\)</span>
is the update gate and reset gate activation function and <span class="math">\(sigmoid\)</span>
is usually used for it. <span class="math">\(act_c\)</span> is the activation function for
candidate hidden state and <span class="math">\(tanh\)</span> is usually used for it.</p>
<p>Note that these <span class="math">\(W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}\)</span> operations on
the input <span class="math">\(x_{t}\)</span> are NOT included in this operator. Users can choose
to use fully-connect layer before GRU layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input of dynamic_gru layer, which supports
variable-time length input sequence. The underlying tensor in this
Variable is a matrix with shape <span class="math">\((T \times 3D)\)</span>, where
<span class="math">\(T\)</span> is the total time steps in this mini-batch, <span class="math">\(D\)</span>
is the hidden size.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The dimension of the gru cell.</li>
<li><strong>param_attr</strong> (<em>ParamAttr|None</em>) &#8211; <p>The parameter attribute for the learnable
hidden-hidden weight matrix. Note:</p>
<ul>
<li>The shape of the weight matrix is <span class="math">\((T \times 3D)\)</span>, where
<span class="math">\(D\)</span> is the hidden size.</li>
<li>All elements in the weight matrix can be divided into two parts.
The first part are weights of the update gate and reset gate with
shape <span class="math">\((D \times 2D)\)</span>, and the second part are weights for
candidate hidden state with shape <span class="math">\((D \times D)\)</span>.</li>
</ul>
</li>
<li><strong>bias_attr</strong> (<em>ParamAttr</em>) &#8211; The parameter attribute for learnable the
hidden-hidden bias.</li>
<li><strong>is_reverse</strong> (<em>bool</em>) &#8211; Whether to compute reversed GRU, default
<code class="xref py py-attr docutils literal"><span class="pre">False</span></code>.</li>
<li><strong>gate_activation</strong> (<em>str</em>) &#8211; The activation for update gate and reset gate.
Choices = [&#8220;sigmoid&#8221;, &#8220;tanh&#8221;, &#8220;relu&#8221;, &#8220;identity&#8221;], default &#8220;sigmoid&#8221;.</li>
<li><strong>activation</strong> (<em>str</em>) &#8211; The activation for candidate hidden state.
Choices = [&#8220;sigmoid&#8221;, &#8220;tanh&#8221;, &#8220;relu&#8221;, &#8220;identity&#8221;], default &#8220;tanh&#8221;.</li>
</ul>
</td>
</tr>
1460
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The hidden state of GRU. The shape is <span class="math">\((T \times D)\)</span>,             and lod is the same with the input.</p>
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">hidden_dim</span> <span class="o">=</span> <span class="mi">512</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">hidden_dim</span> <span class="o">*</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">hidden</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">dynamic_gru</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="n">hidden_dim</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="gru-unit">
<h3>gru_unit<a class="headerlink" href="#gru-unit" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1481
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">gru_unit</code><span class="sig-paren">(</span><em>input</em>, <em>hidden</em>, <em>size</em>, <em>weight=None</em>, <em>bias=None</em>, <em>activation='tanh'</em>, <em>gate_activation='sigmoid'</em><span class="sig-paren">)</span></dt>
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
<dd><p>GRU unit layer. The equation of a gru step is:</p>
<blockquote>
<div><div class="math">
\[ \begin{align}\begin{aligned}u_t &amp; = actGate(xu_{t} + W_u h_{t-1} + b_u)\\r_t &amp; = actGate(xr_{t} + W_r h_{t-1} + b_r)\\m_t &amp; = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)\\h_t &amp; = dot((1-u_t), m_t) + dot(u_t, h_{t-1})\end{aligned}\end{align} \]</div>
</div></blockquote>
<p>The inputs of gru unit includes <span class="math">\(z_t\)</span>, <span class="math">\(h_{t-1}\)</span>. In terms
of the equation above, the <span class="math">\(z_t\)</span> is split into 3 parts -
<span class="math">\(xu_t\)</span>, <span class="math">\(xr_t\)</span> and <span class="math">\(xm_t\)</span>. This means that in order to
implement a full GRU unit operator for an input, a fully
connected layer has to be applied, such that <span class="math">\(z_t = W_{fc}x_t\)</span>.</p>
<p>The terms <span class="math">\(u_t\)</span> and <span class="math">\(r_t\)</span> represent the update and reset gates
of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
an intermediate candidate hidden output, which is denoted by <span class="math">\(m_t\)</span>.
This layer has three outputs <span class="math">\(h_t\)</span>, <span class="math">\(dot(r_t, h_{t-1})\)</span>
and concatenation of <span class="math">\(u_t\)</span>, <span class="math">\(r_t\)</span> and <span class="math">\(m_t\)</span>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The fc transformed input value of current step.</li>
<li><strong>hidden</strong> (<em>Variable</em>) &#8211; The hidden value of lstm unit from previous step.</li>
<li><strong>size</strong> (<em>integer</em>) &#8211; The input dimension value.</li>
<li><strong>weight</strong> (<em>ParamAttr</em>) &#8211; The weight parameters for gru unit. Default: None</li>
<li><strong>bias</strong> (<em>ParamAttr</em>) &#8211; The bias parameters for gru unit. Default: None</li>
<li><strong>activation</strong> (<em>string</em>) &#8211; The activation type for cell (actNode).
Default: &#8216;tanh&#8217;</li>
<li><strong>gate_activation</strong> (<em>string</em>) &#8211; The activation type for gates (actGate).
Default: &#8216;sigmoid&#8217;</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The hidden value, reset-hidden value and gate values.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">tuple</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># assuming we have x_t_data and prev_hidden of size=10</span>
<span class="n">x_t</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x_t_data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">30</span><span class="p">)</span>
<span class="n">hidden_val</span><span class="p">,</span> <span class="n">r_h_val</span><span class="p">,</span> <span class="n">gate_val</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">gru_unit</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x_t</span><span class="p">,</span>
                                       <span class="n">hidden</span> <span class="o">=</span> <span class="n">prev_hidden</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="linear-chain-crf">
<h3>linear_chain_crf<a class="headerlink" href="#linear-chain-crf" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1536
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">linear_chain_crf</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>param_attr=None</em><span class="sig-paren">)</span></dt>
1537 1538 1539 1540 1541 1542 1543
<dd></dd></dl>

</div>
<div class="section" id="crf-decoding">
<h3>crf_decoding<a class="headerlink" href="#crf-decoding" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1544
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">crf_decoding</code><span class="sig-paren">(</span><em>input</em>, <em>param_attr</em>, <em>label=None</em><span class="sig-paren">)</span></dt>
1545 1546 1547 1548 1549 1550 1551
<dd></dd></dl>

</div>
<div class="section" id="cos-sim">
<h3>cos_sim<a class="headerlink" href="#cos-sim" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1552
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">cos_sim</code><span class="sig-paren">(</span><em>X</em>, <em>Y</em><span class="sig-paren">)</span></dt>
1553 1554 1555 1556 1557 1558 1559 1560 1561
<dd><p>This function performs the cosine similarity between two tensors
X and Y and returns that as the output.</p>
</dd></dl>

</div>
<div class="section" id="cross-entropy">
<h3>cross_entropy<a class="headerlink" href="#cross-entropy" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1562
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>soft_label=False</em><span class="sig-paren">)</span></dt>
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
<dd><p><strong>Cross Entropy Layer</strong></p>
<p>This layer computes the cross entropy between <cite>input</cite> and <cite>label</cite>. It
supports both standard cross-entropy and soft-label cross-entropy loss
computation.</p>
<ol class="arabic">
<li><dl class="first docutils">
<dt>One-hot cross-entropy:</dt>
<dd><p class="first"><cite>soft_label = False</cite>, <cite>Label[i, 0]</cite> indicates the class index for sample i:</p>
<div class="last math">
\[Y[i] = -\log(X[i, Label[i]])\]</div>
</dd>
</dl>
</li>
<li><dl class="first docutils">
<dt>Soft-label cross-entropy:</dt>
<dd><p class="first"><cite>soft_label = True</cite>, <cite>Label[i, j]</cite> indicates the soft label of class j
for sample i:</p>
<div class="last math">
\[Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}\]</div>
</dd>
</dl>
<p>Please make sure that in this case the summation of each row of <cite>label</cite>
equals one.</p>
</li>
<li><dl class="first docutils">
<dt>One-hot cross-entropy with vecterized <cite>label</cite>:</dt>
<dd><p class="first last">As a special case of 2), when each row of &#8216;label&#8217; has only one
non-zero element which is equal to 1, soft-label cross-entropy degenerates
to a one-hot cross-entropy with one-hot label representation.</p>
</dd>
</dl>
</li>
</ol>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable|list</em>) &#8211; a 2-D tensor with shape [N x D], where N is the
batch size and D is the number of classes. This
input is a probability computed by the previous
operator, which is almost always the result of
a softmax operator.</li>
<li><strong>label</strong> (<em>Variable|list</em>) &#8211; the ground truth which is a 2-D tensor. When
<cite>soft_label</cite> is set to <cite>False</cite>, <cite>label</cite> is a
tensor&lt;int64&gt; with shape [N x 1]. When
<cite>soft_label</cite> is set to <cite>True</cite>, <cite>label</cite> is a
tensor&lt;float/double&gt; with shape [N x D].</li>
1611
<li><strong>soft_label</strong> (<em>bool</em>) &#8211; a flag indicating whether to
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
interpretate the given labels as soft
labels, default <cite>False</cite>.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A 2-D tensor with shape [N x 1], the cross entropy loss.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Raises:</th><td class="field-body"><p class="first"><cite>ValueError</cite> &#8211; 1) the 1st dimension of <cite>input</cite> and <cite>label</cite> are not equal.
2) when <cite>soft_label == True</cite>, and the 2nd dimension of</p>
<blockquote>
<div><p><cite>input</cite> and <cite>label</cite> are not equal.</p>
</div></blockquote>
<ol class="last arabic simple" start="3">
<li>when <cite>soft_label == False</cite>, and the 2nd dimension of
<cite>label</cite> is not 1.</li>
</ol>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">predict</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">net</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="n">classdim</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">cross_entropy</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="square-error-cost">
<h3>square_error_cost<a class="headerlink" href="#square-error-cost" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1645
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">square_error_cost</code><span class="sig-paren">(</span><em>input</em>, <em>label</em><span class="sig-paren">)</span></dt>
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
<dd><p><strong>Square error cost layer</strong></p>
<p>This layer accepts input predictions and target label and returns the
squared error cost.</p>
<p>For predictions, <span class="math">\(X\)</span>, and target labels, <span class="math">\(Y\)</span>, the equation is:</p>
<div class="math">
\[Out = (X - Y)^2\]</div>
<p>In the above equation:</p>
<blockquote>
<div><ul class="simple">
<li><span class="math">\(X\)</span>: Input predictions, a tensor.</li>
<li><span class="math">\(Y\)</span>: Input labels, a tensor.</li>
<li><span class="math">\(Out\)</span>: Output value, same shape with <span class="math">\(X\)</span>.</li>
</ul>
</div></blockquote>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; Input tensor, has predictions.</li>
<li><strong>label</strong> (<em>Variable</em>) &#8211; Label tensor, has target labels.</li>
</ul>
</td>
</tr>
1670
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the element-wise squared error                   difference of input and label.</p>
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">y</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">y_predict</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y_predict&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">square_error_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">y_predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="accuracy">
<h3>accuracy<a class="headerlink" href="#accuracy" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1691
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">accuracy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>k=1</em>, <em>correct=None</em>, <em>total=None</em><span class="sig-paren">)</span></dt>
1692 1693 1694 1695 1696 1697 1698 1699 1700
<dd><p>This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.</p>
</dd></dl>

</div>
<div class="section" id="chunk-eval">
<h3>chunk_eval<a class="headerlink" href="#chunk-eval" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1701
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">chunk_eval</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>chunk_scheme</em>, <em>num_chunk_types</em>, <em>excluded_chunk_types=None</em><span class="sig-paren">)</span></dt>
1702 1703 1704 1705 1706 1707 1708 1709 1710
<dd><p>This function computes and outputs the precision, recall and
F1-score of chunk detection.</p>
</dd></dl>

</div>
<div class="section" id="sequence-conv">
<h3>sequence_conv<a class="headerlink" href="#sequence-conv" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1711
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_conv</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size=3</em>, <em>filter_stride=1</em>, <em>padding=None</em>, <em>bias_attr=None</em>, <em>param_attr=None</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
<dd><p>This function creates the op for sequence_conv, using the inputs and
other convolutional configurations for the filters and stride as given
in the input parameters to the function.</p>
</dd></dl>

</div>
<div class="section" id="conv2d">
<h3>conv2d<a class="headerlink" href="#conv2d" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1722
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">conv2d</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>stride=1</em>, <em>padding=0</em>, <em>groups=None</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_cudnn=True</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
<dd><p><strong>Convlution2D Layer</strong></p>
<p>The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
Output(Output) are in NCHW format. Where N is batch size, C is the number of
channels, H is the height of the feature, and W is the width of the feature.
The details of convolution layer, please refer UFLDL&#8217;s <a class="reference external" href="http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/">convolution,</a> .
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.</p>
<p>For each input <span class="math">\(X\)</span>, the equation is:</p>
<div class="math">
\[Out = \sigma (W \ast X + b)\]</div>
<p>In the above equation:</p>
<ul class="simple">
<li><span class="math">\(X\)</span>: Input value, a tensor with NCHW format.</li>
<li><span class="math">\(W\)</span>: Filter value, a tensor with MCHW format.</li>
<li><span class="math">\(\ast\)</span>: Convolution operation.</li>
<li><span class="math">\(b\)</span>: Bias value, a 2-D tensor with shape [M, 1].</li>
<li><span class="math">\(\sigma\)</span>: Activation function.</li>
<li><dl class="first docutils">
<dt><span class="math">\(Out\)</span>: Output value, the shape of <span class="math">\(Out\)</span> and <span class="math">\(X\)</span> may be</dt>
<dd>different.</dd>
</dl>
</li>
</ul>
<p class="rubric">Example</p>
<ul>
<li><p class="first">Input:</p>
<p>Input shape: $(N, C_{in}, H_{in}, W_{in})$</p>
<p>Filter shape: $(C_{out}, C_{in}, H_f, W_f)$</p>
</li>
<li><p class="first">Output:
Output shape: $(N, C_{out}, H_{out}, W_{out})$</p>
</li>
</ul>
<p>Where</p>
<div class="math">
\[\]</div>
<p>H_{out}&amp;= frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \
W_{out}&amp;= frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input image with [N, C, H, W] format.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; The number of filter. It is as same as the output
image channel.</li>
<li><strong>filter_size</strong> (<em>int|tuple|None</em>) &#8211; The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.</li>
<li><strong>stride</strong> (<em>int|tuple</em>) &#8211; The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.</li>
<li><strong>padding</strong> (<em>int|tuple</em>) &#8211; The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky&#8217;s Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) &#8211; The parameters to the Conv2d Layer. Default: None</li>
<li><strong>bias_attr</strong> (<em>ParamAttr</em>) &#8211; Bias parameter for the Conv2d layer. Default: None</li>
<li><strong>use_cudnn</strong> (<em>bool</em>) &#8211; Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True</li>
<li><strong>act</strong> (<em>str</em>) &#8211; Activation type. Default: None</li>
</ul>
</td>
</tr>
1793
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the convolution and                   non-linearity activation result.</p>
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first">Variable</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><code class="xref py py-exc docutils literal"><span class="pre">ValueError</span></code> &#8211; If the shapes of input, filter_size, stride, padding and
groups mismatch.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span>
    <span class="n">name</span><span class="o">=</span><span class="s1">&#39;data&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">conv2d</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span>
    <span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">num_filters</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">filter_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;relu&quot;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="sequence-pool">
<h3>sequence_pool<a class="headerlink" href="#sequence-pool" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1819
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_pool</code><span class="sig-paren">(</span><em>input</em>, <em>pool_type</em><span class="sig-paren">)</span></dt>
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
<dd><p>This function add the operator for sequence pooling.
It pools features of all time-steps of each instance, and is applied
on top of the input using pool_type mentioned in the parameters.</p>
<p>It supports four pool_type:</p>
<ul class="simple">
<li>average: <span class="math">\(Out[i] = \frac{\sum_i X_i}{N}\)</span></li>
<li>sum:     <span class="math">\(Out[i] = \sum_jX_{ij}\)</span></li>
<li>sqrt:    <span class="math">\(Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}\)</span></li>
<li>max:     <span class="math">\(Out[i] = max(X_i)\)</span></li>
</ul>
<div class="highlight-text"><div class="highlight"><pre><span></span>x is a 1-level LoDTensor:
  x.lod = [[0, 2, 5, 7]]
  x.data = [1, 3, 2, 4, 6, 5, 1]
  x.dims = [7, 1]

then output is a Tensor:
  out.dim = [3, 1]
  with condition len(x.lod[-1]) - 1 == out.dims[0]

for different pool_type:
  average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
  sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
  sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
             6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
  max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>variable</em>) &#8211; The input variable which is a LoDTensor.</li>
<li><strong>pool_type</strong> (<em>string</em>) &#8211; The pooling type of sequence_pool.
It supports average, sum, sqrt and max.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The sequence pooling variable which is a Tensor.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">avg_x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_pool</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">pool_type</span><span class="o">=</span><span class="s1">&#39;average&#39;</span><span class="p">)</span>
<span class="n">sum_x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_pool</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">pool_type</span><span class="o">=</span><span class="s1">&#39;sum&#39;</span><span class="p">)</span>
<span class="n">sqrt_x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_pool</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">pool_type</span><span class="o">=</span><span class="s1">&#39;sqrt&#39;</span><span class="p">)</span>
<span class="n">max_x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_pool</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">pool_type</span><span class="o">=</span><span class="s1">&#39;max&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="pool2d">
<h3>pool2d<a class="headerlink" href="#pool2d" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1879
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">pool2d</code><span class="sig-paren">(</span><em>input</em>, <em>pool_size=-1</em>, <em>pool_type='max'</em>, <em>pool_stride=1</em>, <em>pool_padding=0</em>, <em>global_pooling=False</em>, <em>use_cudnn=True</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
1880 1881 1882 1883 1884 1885 1886 1887 1888
<dd><p>This function adds the operator for pooling in 2 dimensions, using the
pooling configurations mentioned in input parameters.</p>
</dd></dl>

</div>
<div class="section" id="batch-norm">
<h3>batch_norm<a class="headerlink" href="#batch-norm" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1889
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">batch_norm</code><span class="sig-paren">(</span><em>input</em>, <em>act=None</em>, <em>is_test=False</em>, <em>momentum=0.9</em>, <em>epsilon=1e-05</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>data_layout='NCHW'</em>, <em>name=None</em>, <em>moving_mean_name=None</em>, <em>moving_variance_name=None</em><span class="sig-paren">)</span></dt>
1890 1891 1892 1893
<dd><p>This function helps create an operator to implement
the BatchNorm layer using the configurations from the input parameters.</p>
</dd></dl>

1894 1895 1896 1897 1898
</div>
<div class="section" id="layer-norm">
<h3>layer_norm<a class="headerlink" href="#layer-norm" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1899
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">layer_norm</code><span class="sig-paren">(</span><em>input</em>, <em>scale=True</em>, <em>shift=True</em>, <em>begin_norm_axis=1</em>, <em>epsilon=1e-05</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
<dd><p><strong>Layer Normalization</strong></p>
<p>Assume feature vectors exist on dimensions
<code class="xref py py-attr docutils literal"><span class="pre">begin_norm_axis</span> <span class="pre">...</span> <span class="pre">rank(input)</span></code> and calculate the moment statistics
along these dimensions for each feature vector <span class="math">\(a\)</span> with size
<span class="math">\(H\)</span>, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if <code class="xref py py-attr docutils literal"><span class="pre">scale</span></code> and <code class="xref py py-attr docutils literal"><span class="pre">shift</span></code> are set.</p>
<p>Refer to <a class="reference external" href="https://arxiv.org/pdf/1607.06450v1.pdf">Layer Normalization</a></p>
<p>The formula is as follows:</p>
<div class="math">
\[ \begin{align}\begin{aligned}\mu &amp; = \frac{1}{H}\sum_{i=1}^{H} a_i\\\sigma &amp; = \sqrt{\frac{1}{H}\sum_{i=1}^{H}(a_i - \mu)^2}\\h &amp; = f(\frac{g}{\sigma}(a - \mu) + b)\end{aligned}\end{align} \]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input tensor variable.</li>
<li><strong>scale</strong> (<em>bool</em>) &#8211; Whether to learn the adaptive gain <span class="math">\(g\)</span> after
normalization.</li>
<li><strong>shift</strong> (<em>bool</em>) &#8211; Whether to learn the adaptive bias <span class="math">\(b\)</span> after
normalization.</li>
<li><strong>begin_norm_axis</strong> (<em>bool</em>) &#8211; The normalization will be performed along
dimensions from <code class="xref py py-attr docutils literal"><span class="pre">begin_norm_axis</span></code> to <code class="xref py py-attr docutils literal"><span class="pre">rank(input)</span></code>.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; The small value added to the variance to prevent
division by zero.</li>
<li><strong>param_attr</strong> (<em>ParamAttr|None</em>) &#8211; The parameter attribute for the learnable
gain <span class="math">\(g\)</span>.</li>
<li><strong>bias_attr</strong> (<em>ParamAttr|None</em>) &#8211; The parameter attribute for the learnable
bias <span class="math">\(b\)</span>.</li>
<li><strong>act</strong> (<em>str</em>) &#8211; Activation to be applied to the output of layer normalizaiton.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A tensor variable with the same shape as the input.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span>
  <span class="n">name</span><span class="o">=</span><span class="s1">&#39;data&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">begin_norm_axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

1949 1950 1951 1952 1953
</div>
<div class="section" id="beam-search-decode">
<h3>beam_search_decode<a class="headerlink" href="#beam-search-decode" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1954
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">beam_search_decode</code><span class="sig-paren">(</span><em>ids</em>, <em>scores</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
1955 1956 1957 1958 1959 1960 1961
<dd></dd></dl>

</div>
<div class="section" id="conv2d-transpose">
<h3>conv2d_transpose<a class="headerlink" href="#conv2d-transpose" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
1962
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">conv2d_transpose</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>output_size=None</em>, <em>filter_size=None</em>, <em>padding=0</em>, <em>stride=1</em>, <em>dilation=1</em>, <em>param_attr=None</em>, <em>use_cudnn=True</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
<dd><p><strong>Convlution2D transpose layer</strong></p>
<p>The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCHW format. Where N is batch size, C is the number of channels,
H is the height of the feature, and W is the width of the feature.
Parameters(dilations, strides, paddings) are two elements. These two elements
represent height and width, respectively. The details of convolution transpose
layer, please refer to the following explanation and references
<a class="reference external" href="http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf">therein</a>.</p>
<p>For each input <span class="math">\(X\)</span>, the equation is:</p>
<div class="math">
\[Out = W \ast X\]</div>
<p>In the above equation:</p>
<ul class="simple">
<li><span class="math">\(X\)</span>: Input value, a tensor with NCHW format.</li>
<li><span class="math">\(W\)</span>: Filter value, a tensor with MCHW format.</li>
<li><span class="math">\(\ast\)</span> : Convolution transpose operation.</li>
<li><dl class="first docutils">
<dt><span class="math">\(Out\)</span>: Output value, the shape of <span class="math">\(Out\)</span> and <span class="math">\(X\)</span> may be</dt>
<dd>different.</dd>
</dl>
</li>
</ul>
<p class="rubric">Example</p>
<ul>
<li><p class="first">Input:</p>
<p>Input shape: $(N, C_{in}, H_{in}, W_{in})$</p>
<p>Filter shape: $(C_{in}, C_{out}, H_f, W_f)$</p>
</li>
<li><p class="first">Output:</p>
<p>Output shape: $(N, C_{out}, H_{out}, W_{out})$</p>
</li>
</ul>
<p>Where</p>
<div class="math">
\[\begin{split}H_{out} &amp;= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
W_{out} &amp;= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input image with [N, C, H, W] format.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; The number of the filter. It is as same as the output
image channel.</li>
<li><strong>output_size</strong> (<em>int|tuple|None</em>) &#8211; The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). This
parameter only works when filter_size is None.</li>
<li><strong>filter_size</strong> (<em>int|tuple|None</em>) &#8211; The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to
calculate filter_size.</li>
<li><strong>padding</strong> (<em>int|tuple</em>) &#8211; The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.</li>
<li><strong>stride</strong> (<em>int|tuple</em>) &#8211; The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.</li>
<li><strong>dilation</strong> (<em>int|tuple</em>) &#8211; The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) &#8211; The parameters to the Conv2d_transpose Layer.
Default: None</li>
<li><strong>use_cudnn</strong> (<em>bool</em>) &#8211; Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the convolution transpose result.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first">Variable</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><code class="xref py py-exc docutils literal"><span class="pre">ValueError</span></code> &#8211; If the shapes of input, filter_size, stride, padding and
groups mismatch.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span>
    <span class="n">name</span><span class="o">=</span><span class="s1">&#39;data&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">conv2d_transpose</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">conv2d_transpose</span><span class="p">(</span>
    <span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">num_filters</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">filter_size</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="sequence-expand">
<h3>sequence_expand<a class="headerlink" href="#sequence-expand" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2059
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_expand</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
<dd><p>Sequence Expand Layer. This layer will expand the input variable <strong>x</strong>
according to LoD information of <strong>y</strong>. And the following examples will
explain how sequence_expand works:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>* Case 1
    x is a LoDTensor:
        x.lod = [[0,       2, 3],
                 [0, 1,    3, 4]]
        x.data = [a, b, c, d]
        x.dims = [4, 1]

    y is a LoDTensor:
        y.lod = [[0,    2,    4],
                 [0, 3, 6, 7, 8]]

    with condition len(y.lod[-1]) - 1 == x.dims[0]

    then output is a 2-level LoDTensor:
        out.lod = [[0,                2,    4],
                   [0,       3,       6, 7, 8]]
        out.data = [a, a, a, b, b, b, c, d]
        out.dims = [8, 1]

* Case 2
    x is a Tensor:
        x.data = [a, b, c]
        x.dims = [3, 1]

    y is a LoDTensor:
        y.lod = [[0, 2, 3, 6]]

    with condition len(y.lod[-1]) - 1 == x.dims[0]

    then output is a 1-level LoDTensor:
        out.lod = [[0,    2, 3,      6]]
        out.data = [a, a, b, c, c, c]
        out.dims = [6, 1]
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>y</strong> (<em>Variable</em>) &#8211; The input variable which is a LoDTensor.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The expanded variable which is a LoDTensor.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">],</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">sequence_expand</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="lstm-unit">
<h3>lstm_unit<a class="headerlink" href="#lstm-unit" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2132
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">lstm_unit</code><span class="sig-paren">(</span><em>x_t</em>, <em>hidden_t_prev</em>, <em>cell_t_prev</em>, <em>forget_bias=0.0</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
<dd><p>Lstm unit layer. The equation of a lstm step is:</p>
<blockquote>
<div><div class="math">
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)\\f_t &amp; = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
</div></blockquote>
<p>The inputs of lstm unit include <span class="math">\(x_t\)</span>, <span class="math">\(h_{t-1}\)</span> and
<span class="math">\(c_{t-1}\)</span>. The 2nd dimensions of <span class="math">\(h_{t-1}\)</span> and <span class="math">\(c_{t-1}\)</span>
should be same. The implementation separates the linear transformation and
non-linear transformation apart. Here, we take <span class="math">\(i_t\)</span> as an example.
The linear transformation is applied by calling a <cite>fc</cite> layer and the
equation is:</p>
<blockquote>
<div><div class="math">
\[L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i\]</div>
</div></blockquote>
<p>The non-linear transformation is applied by calling <cite>lstm_unit_op</cite> and the
equation is:</p>
<blockquote>
<div><div class="math">
\[i_t = \sigma(L_{i_t})\]</div>
</div></blockquote>
<p>This layer has two outputs including <span class="math">\(h_t\)</span> and <span class="math">\(o_t\)</span>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x_t</strong> (<em>Variable</em>) &#8211; The input value of current step, a 2-D tensor with shape
M x N, M for batch size and N for input size.</li>
<li><strong>hidden_t_prev</strong> (<em>Variable</em>) &#8211; The hidden value of lstm unit, a 2-D tensor
with shape M x S, M for batch size and S for size of lstm unit.</li>
<li><strong>cell_t_prev</strong> (<em>Variable</em>) &#8211; The cell value of lstm unit, a 2-D tensor with
shape M x S, M for batch size and S for size of lstm unit.</li>
<li><strong>forget_bias</strong> (<em>float</em>) &#8211; The forget bias of lstm unit.</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) &#8211; The attributes of parameter weights, used to set
initializer, name etc.</li>
<li><strong>bias_attr</strong> (<em>ParamAttr</em>) &#8211; The attributes of bias weights, if not False,
bias weights will be created and be set to default value.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The hidden value and cell value of lstm unit.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first">tuple</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><code class="xref py py-exc docutils literal"><span class="pre">ValueError</span></code> &#8211; The ranks of <strong>x_t</strong>, <strong>hidden_t_prev</strong> and <strong>cell_t_prev</strong>
not be 2 or the 1st dimensions of <strong>x_t</strong>, <strong>hidden_t_prev</strong>
and <strong>cell_t_prev</strong> not be the same or the 2nd dimensions of
<strong>hidden_t_prev</strong> and <strong>cell_t_prev</strong> not be the same.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x_t</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x_t_data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">prev_hidden</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">prev_hidden_data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">30</span><span class="p">)</span>
<span class="n">prev_cell</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">prev_cell_data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">30</span><span class="p">)</span>
<span class="n">hidden_value</span><span class="p">,</span> <span class="n">cell_value</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lstm_unit</span><span class="p">(</span><span class="n">x_t</span><span class="o">=</span><span class="n">x_t</span><span class="p">,</span>
                                       <span class="n">hidden_t_prev</span><span class="o">=</span><span class="n">prev_hidden</span><span class="p">,</span>
                                       <span class="n">cell_t_prev</span><span class="o">=</span><span class="n">prev_cell</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="reduce-sum">
<h3>reduce_sum<a class="headerlink" href="#reduce-sum" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2206
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reduce_sum</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
<dd><p>Computes the sum of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>dim</strong> (<em>int|None</em>) &#8211; The dimension along which the sum is performed. If
<code class="xref py py-attr docutils literal"><span class="pre">None</span></code>, sum all elements of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> and return a
Tensor variable with a single element, otherwise must be in the
range <span class="math">\([-rank(input), rank(input))\)</span>. If <span class="math">\(dim &lt; 0\)</span>,
the dimension to reduce is <span class="math">\(rank + dim\)</span>.</li>
2219
<li><strong>keep_dim</strong> (<em>bool|False</em>) &#8211; Whether to reserve the reduced dimension in the
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
output Tensor. The result tensor will have one fewer dimension
than the <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> unless <code class="xref py py-attr docutils literal"><span class="pre">keep_dim</span></code> is true.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The reduced Tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># x is a Tensor variable with following elements:</span>
<span class="c1">#    [[0.2, 0.3, 0.5, 0.9]</span>
<span class="c1">#     [0.1, 0.2, 0.6, 0.7]]</span>
<span class="c1"># Each example is followed by the correspending output tensor.</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>  <span class="c1"># [3.5]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>  <span class="c1"># [0.3, 0.5, 1.1, 1.6]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>  <span class="c1"># [1.9, 1.6]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">keep_dim</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>  <span class="c1"># [[1.9], [1.6]]</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="reduce-mean">
<h3>reduce_mean<a class="headerlink" href="#reduce-mean" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2253
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reduce_mean</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
<dd><p>Computes the mean of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>dim</strong> (<em>int|None</em>) &#8211; The dimension along which the mean is computed. If
<code class="xref py py-attr docutils literal"><span class="pre">None</span></code>, compute the mean over all elements of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>
and return a Tensor variable with a single element, otherwise
must be in the range <span class="math">\([-rank(input), rank(input))\)</span>. If
<span class="math">\(dim &lt; 0\)</span>, the dimension to reduce is <span class="math">\(rank + dim\)</span>.</li>
<li><strong>keep_dim</strong> (<em>bool</em>) &#8211; Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> unless <code class="xref py py-attr docutils literal"><span class="pre">keep_dim</span></code> is true.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The reduced Tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># x is a Tensor variable with following elements:</span>
<span class="c1">#    [[0.2, 0.3, 0.5, 0.9]</span>
<span class="c1">#     [0.1, 0.2, 0.6, 0.7]]</span>
<span class="c1"># Each example is followed by the correspending output tensor.</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>  <span class="c1"># [0.4375]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>  <span class="c1"># [0.15, 0.25, 0.55, 0.8]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>  <span class="c1"># [0.475, 0.4]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">keep_dim</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>  <span class="c1"># [[0.475], [0.4]]</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="reduce-max">
<h3>reduce_max<a class="headerlink" href="#reduce-max" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2300
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reduce_max</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
<dd><p>Computes the maximum of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>dim</strong> (<em>int|None</em>) &#8211; The dimension along which the maximum is computed.
If <code class="xref py py-attr docutils literal"><span class="pre">None</span></code>, compute the maximum over all elements of
<code class="xref py py-attr docutils literal"><span class="pre">input</span></code> and return a Tensor variable with a single element,
otherwise must be in the range <span class="math">\([-rank(input), rank(input))\)</span>.
If <span class="math">\(dim &lt; 0\)</span>, the dimension to reduce is <span class="math">\(rank + dim\)</span>.</li>
<li><strong>keep_dim</strong> (<em>bool</em>) &#8211; Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> unless <code class="xref py py-attr docutils literal"><span class="pre">keep_dim</span></code> is true.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The reduced Tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># x is a Tensor variable with following elements:</span>
<span class="c1">#    [[0.2, 0.3, 0.5, 0.9]</span>
<span class="c1">#     [0.1, 0.2, 0.6, 0.7]]</span>
<span class="c1"># Each example is followed by the correspending output tensor.</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_max</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>  <span class="c1"># [0.9]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_max</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>  <span class="c1"># [0.2, 0.3, 0.6, 0.9]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_max</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>  <span class="c1"># [0.9, 0.7]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_max</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">keep_dim</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>  <span class="c1"># [[0.9], [0.7]]</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="reduce-min">
<h3>reduce_min<a class="headerlink" href="#reduce-min" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2347
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reduce_min</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
<dd><p>Computes the minimum of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>dim</strong> (<em>int|None</em>) &#8211; The dimension along which the minimum is computed.
If <code class="xref py py-attr docutils literal"><span class="pre">None</span></code>, compute the minimum over all elements of
<code class="xref py py-attr docutils literal"><span class="pre">input</span></code> and return a Tensor variable with a single element,
otherwise must be in the range <span class="math">\([-rank(input), rank(input))\)</span>.
If <span class="math">\(dim &lt; 0\)</span>, the dimension to reduce is <span class="math">\(rank + dim\)</span>.</li>
<li><strong>keep_dim</strong> (<em>bool</em>) &#8211; Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> unless <code class="xref py py-attr docutils literal"><span class="pre">keep_dim</span></code> is true.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The reduced Tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># x is a Tensor variable with following elements:</span>
<span class="c1">#    [[0.2, 0.3, 0.5, 0.9]</span>
<span class="c1">#     [0.1, 0.2, 0.6, 0.7]]</span>
<span class="c1"># Each example is followed by the correspending output tensor.</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_min</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>  <span class="c1"># [0.1]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_min</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>  <span class="c1"># [0.1, 0.2, 0.5, 0.7]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_min</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>  <span class="c1"># [0.2, 0.1]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_min</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">keep_dim</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>  <span class="c1"># [[0.2], [0.1]]</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="sequence-first-step">
<h3>sequence_first_step<a class="headerlink" href="#sequence-first-step" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2394
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_first_step</code><span class="sig-paren">(</span><em>input</em><span class="sig-paren">)</span></dt>
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
<dd><p>This funciton get the first step of sequence.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>x is a 1-level LoDTensor:
  x.lod = [[0, 2, 5, 7]]
  x.data = [1, 3, 2, 4, 6, 5, 1]
  x.dims = [7, 1]

then output is a Tensor:
  out.dim = [3, 1]
  with condition len(x.lod[-1]) - 1 == out.dims[0]
  out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>input</strong> (<em>variable</em>) &#8211; The input variable which is a LoDTensor.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The sequence&#8217;s first step variable which is a Tensor.</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">x_first_step</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_first_step</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="sequence-last-step">
<h3>sequence_last_step<a class="headerlink" href="#sequence-last-step" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2430
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_last_step</code><span class="sig-paren">(</span><em>input</em><span class="sig-paren">)</span></dt>
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
<dd><p>This funciton get the last step of sequence.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>x is a 1-level LoDTensor:
  x.lod = [[0, 2, 5, 7]]
  x.data = [1, 3, 2, 4, 6, 5, 1]
  x.dims = [7, 1]

then output is a Tensor:
  out.dim = [3, 1]
  with condition len(x.lod[-1]) - 1 == out.dims[0]
  out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>input</strong> (<em>variable</em>) &#8211; The input variable which is a LoDTensor.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The sequence&#8217;s last step variable which is a Tensor.</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">x_last_step</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_last_step</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="dropout">
<h3>dropout<a class="headerlink" href="#dropout" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2466
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">dropout</code><span class="sig-paren">(</span><em>x</em>, <em>dropout_prob</em>, <em>is_test=False</em>, <em>seed=None</em><span class="sig-paren">)</span></dt>
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
<dd><p>Computes dropout.</p>
<p>Drop or keep each element of <cite>x</cite> independently. Dropout is a regularization
technique for reducing overfitting by preventing neuron co-adaption during
training. The dropout operator randomly set (according to the given dropout
probability) the outputs of some units to zero, while others are remain
unchanged.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>variable</em>) &#8211; The input tensor.</li>
<li><strong>dropout_prob</strong> (<em>float</em>) &#8211; Probability of setting units to zero.</li>
<li><strong>is_test</strong> (<em>bool</em>) &#8211; A flag indicating whether it is in test phrase or not.</li>
<li><strong>seed</strong> (<em>int</em>) &#8211; A Python integer used to create random seeds. If this
parameter is set to None, a random seed is used.
NOTE: If an integer seed is given, always the same output
units will be dropped. DO NOT use a fixed seed in training.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;data&quot;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s2">&quot;float32&quot;</span><span class="p">)</span>
<span class="n">droped</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">dropout_rate</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="split">
<h3>split<a class="headerlink" href="#split" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2508
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">split</code><span class="sig-paren">(</span><em>input</em>, <em>num_or_sections</em>, <em>dim=-1</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
<dd><p>Split the input tensor into multiple sub-tensors.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>num_or_sections</strong> (<em>int|list</em>) &#8211; If <code class="xref py py-attr docutils literal"><span class="pre">num_or_sections</span></code> is an integer,
then the integer indicates the number of equal sized sub-tensors
that the tensor will be divided into. If <code class="xref py py-attr docutils literal"><span class="pre">num_or_sections</span></code>
is a list of integers, the length of list indicates the number of
sub-tensors and the integers indicate the sizes of sub-tensors&#8217;
<code class="xref py py-attr docutils literal"><span class="pre">dim</span></code> dimension orderly.</li>
<li><strong>dim</strong> (<em>int</em>) &#8211; The dimension along which to split. If <span class="math">\(dim &lt; 0\)</span>, the
dimension to split along is <span class="math">\(rank(input) + dim\)</span>.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The list of segmented tensor variables.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">List</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># x is a Tensor variable with shape [3, 9, 5]:</span>
<span class="n">x0</span><span class="p">,</span> <span class="n">x1</span><span class="p">,</span> <span class="n">x2</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">num_or_sections</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">x0</span><span class="o">.</span><span class="n">shape</span>  <span class="c1"># [3, 3, 5]</span>
<span class="n">x1</span><span class="o">.</span><span class="n">shape</span>  <span class="c1"># [3, 3, 5]</span>
<span class="n">x2</span><span class="o">.</span><span class="n">shape</span>  <span class="c1"># [3, 3, 5]</span>
<span class="n">x0</span><span class="p">,</span> <span class="n">x1</span><span class="p">,</span> <span class="n">x2</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">num_or_sections</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">x0</span><span class="o">.</span><span class="n">shape</span>  <span class="c1"># [3, 2, 5]</span>
<span class="n">x1</span><span class="o">.</span><span class="n">shape</span>  <span class="c1"># [3, 3, 5]</span>
<span class="n">x2</span><span class="o">.</span><span class="n">shape</span>  <span class="c1"># [3, 4, 5]</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="ctc-greedy-decoder">
<h3>ctc_greedy_decoder<a class="headerlink" href="#ctc-greedy-decoder" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2556
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">ctc_greedy_decoder</code><span class="sig-paren">(</span><em>input</em>, <em>blank</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
<dd><p>This op is used to decode sequences by greedy policy by below steps:
1. Get the indexes of max value for each row in input. a.k.a.</p>
<blockquote>
<div>numpy.argmax(input, axis=0).</div></blockquote>
<ol class="arabic simple" start="2">
<li>For each sequence in result of step1, merge repeated tokens between two
blanks and delete all blanks.</li>
</ol>
<p>A simple example as below:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Given:

input.data = [[0.6, 0.1, 0.3, 0.1],
              [0.3, 0.2, 0.4, 0.1],
              [0.1, 0.5, 0.1, 0.3],
              [0.5, 0.1, 0.3, 0.1],

              [0.5, 0.1, 0.3, 0.1],
              [0.2, 0.2, 0.2, 0.4],
              [0.2, 0.2, 0.1, 0.5],
              [0.5, 0.1, 0.3, 0.1]]

input.lod = [[0, 4, 8]]

Then:

output.data = [[2],
               [1],
               [3]]

output.lod = [[0, 2, 3]]
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; (LoDTensor&lt;float&gt;), the probabilities of
variable-length sequences, which is a 2-D Tensor with
LoD information. It&#8217;s shape is [Lp, num_classes + 1],
where Lp is the sum of all input sequences&#8217; length and
num_classes is the true number of classes. (not
including the blank label).</li>
<li><strong>blank</strong> (<em>int</em>) &#8211; the blank label index of Connectionist Temporal
Classification (CTC) loss, which is in thehalf-opened
interval [0, num_classes + 1).</li>
</ul>
</td>
</tr>
2606 2607
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">CTC greedy decode result. If all the sequences in result were
empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].</p>
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">8</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>

<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">ctc_greedy_decoder</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">blank</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="edit-distance">
<h3>edit_distance<a class="headerlink" href="#edit-distance" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2628
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">edit_distance</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>normalized=True</em>, <em>ignored_tokens=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
<dd><p>EditDistance operator computes the edit distances between a batch of
hypothesis strings and their references. Edit distance, also called
Levenshtein distance, measures how dissimilar two strings are by counting
the minimum number of operations to transform one string into anthor.
Here the operations include insertion, deletion, and substitution.</p>
<p>For example, given hypothesis string A = &#8220;kitten&#8221; and reference
B = &#8220;sitting&#8221;, the edit distance is 3 for A will be transformed into B
at least after two substitutions and one insertion:</p>
<p>&#8220;kitten&#8221; -&gt; &#8220;sitten&#8221; -&gt; &#8220;sittin&#8221; -&gt; &#8220;sitting&#8221;</p>
<p>Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
the total number denoted by <cite>batch_size</cite>, and the separation is specified
by the LoD information. And the <cite>batch_size</cite> reference strings are arranged
in order in the same way in the LoDTensor Input(Refs).</p>
<p>Output(Out) contains the <cite>batch_size</cite> results and each stands for the edit
distance for a pair of strings respectively. If Attr(normalized) is true,
the edit distance will be divided by the length of reference string.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The indices for hypothesis strings.</li>
<li><strong>label</strong> (<em>Variable</em>) &#8211; The indices for reference strings.</li>
<li><strong>normalized</strong> (<em>bool</em>) &#8211; Indicated whether to normalize the edit distance by
the length of reference string.</li>
<li><strong>ignored_tokens</strong> (<em>list of int</em>) &#8211; Tokens that should be removed before
calculating edit distance.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">sequence-to-sequence edit distance in shape [batch_size, 1].</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">8</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">7</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>

<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">edit_distance</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="l2-normalize">
<h3>l2_normalize<a class="headerlink" href="#l2-normalize" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2681
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">l2_normalize</code><span class="sig-paren">(</span><em>x</em>, <em>axis</em>, <em>epsilon=1e-12</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
<dd><p><strong>L2 normalize Layer</strong></p>
<p>The l2 normalize layer normalizes <cite>x</cite> along dimension <cite>axis</cite> using an L2
norm. For a 1-D tensor (<cite>dim</cite> is fixed to 0), this layer computes</p>
<p>output = x / sqrt(max(sum(x**2), epsilon))</p>
<p>For <cite>x</cite> with more dimensions, this layer independently normalizes each 1-D
slice along dimension <cite>axis</cite>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable|list</em>) &#8211; The input tensor to l2_normalize layer.</li>
<li><strong>axis</strong> (<em>int</em>) &#8211; Dimension along which to normalize the input.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; A lower bound value for <cite>x</cite>&#8216;s l2 norm. sqrt(epsilon) will
be used as the divisor if the l2 norm of <cite>x</cite> is less than
sqrt(epsilon).</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The output tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;data&quot;</span><span class="p">,</span>
                         <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">17</span><span class="p">,</span> <span class="mi">13</span><span class="p">),</span>
                         <span class="n">dtype</span><span class="o">=</span><span class="s2">&quot;float32&quot;</span><span class="p">)</span>
<span class="n">normed</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">l2_normalize</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="matmul">
<h3>matmul<a class="headerlink" href="#matmul" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2725
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">matmul</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>transpose_x=False</em>, <em>transpose_y=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
<dd><p>Applies matrix multiplication to two tensors.</p>
<p>Currently, the input tensors&#8217; rank can be any, but when the rank of any
inputs is bigger than 3, this two inputs&#8217; rank should be equal.</p>
<p>The actual behavior depends on the shapes of <span class="math">\(x\)</span>, <span class="math">\(y\)</span> and the
flag values of <code class="xref py py-attr docutils literal"><span class="pre">transpose_x</span></code>, <code class="xref py py-attr docutils literal"><span class="pre">transpose_y</span></code>. Specifically:</p>
<ul class="simple">
<li>If a transpose flag is specified, the last two dimensions of the tensor
are transposed. If the tensor is rank-1 of shape <span class="math">\([D]\)</span>, then for
<span class="math">\(x\)</span> it is treated as <span class="math">\([1, D]\)</span> in nontransposed form and as
<span class="math">\([D, 1]\)</span> in transposed form, whereas for <span class="math">\(y\)</span> it is the
opposite: It is treated as <span class="math">\([D, 1]\)</span> in nontransposed form and as
<span class="math">\([1, D]\)</span> in transposed form.</li>
<li>After transpose, the two tensors are 2-D or n-D and matrix multiplication
performs in the following way.<ul>
<li>If both are 2-D, they are multiplied like conventional matrices.</li>
<li>If either is n-D, it is treated as a stack of matrices residing in the
last two dimensions and a batched matrix multiply supporting broadcast
applies on the two tensors.</li>
</ul>
</li>
</ul>
<p>Also note that if the raw tensor <span class="math">\(x\)</span> or <span class="math">\(y\)</span> is rank-1 and
nontransposed, the prepended or appended dimension <span class="math">\(1\)</span> will be
removed after matrix multiplication.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>y</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>transpose_x</strong> (<em>bool</em>) &#8211; Whether to transpose <span class="math">\(x\)</span> before multiplication.</li>
<li><strong>transpose_y</strong> (<em>bool</em>) &#8211; Whether to transpose <span class="math">\(y\)</span> before multiplication.</li>
<li><strong>name</strong> (<em>str|None</em>) &#8211; A name for this layer(optional). If set None, the layer
will be named automatically.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The product Tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># Examples to clarify shapes of the inputs and output</span>
<span class="c1"># x: [B, ..., M, K], y: [B, ..., K, N]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>  <span class="c1"># out: [B, ..., M, N]</span>

<span class="c1"># x: [B, M, K], y: [B, K, N]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>  <span class="c1"># out: [B, M, N]</span>

<span class="c1"># x: [B, M, K], y: [K, N]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>  <span class="c1"># out: [B, M, N]</span>

<span class="c1"># x: [M, K], y: [K, N]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>  <span class="c1"># out: [M, N]</span>

<span class="c1"># x: [B, M, K], y: [K]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>  <span class="c1"># out: [B, M]</span>

<span class="c1"># x: [K], y: [K]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>  <span class="c1"># out: [1]</span>

<span class="c1"># x: [M], y: [N]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="bp">True</span><span class="p">,</span> <span class="bp">True</span><span class="p">)</span>  <span class="c1"># out: [M, N]</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="warpctc">
<h3>warpctc<a class="headerlink" href="#warpctc" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2803
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">warpctc</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>blank=0</em>, <em>norm_by_times=False</em><span class="sig-paren">)</span></dt>
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
<dd><p>An operator integrating the open source Warp-CTC library
(<a class="reference external" href="https://github.com/baidu-research/warp-ctc">https://github.com/baidu-research/warp-ctc</a>)
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with CTC, since a native softmax activation is
interated to the Warp-CTC library, to to normlize values for each row of the
input tensor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; (LodTensor, default: LoDTensor&lt;float&gt;),
the unscaled probabilities of variable-length sequences,
which is a 2-D Tensor with LoD information.
It&#8217;s shape is [Lp, num_classes + 1], where Lp is the sum of all input
sequences&#8217; length and num_classes is the true number of classes.
(not including the blank label).</li>
<li><strong>label</strong> (<em>Variable</em>) &#8211; (LodTensor, default: LoDTensor&lt;int&gt;), the ground truth
of variable-length sequence, which is a 2-D Tensor with LoD
information. It is of the shape [Lg, 1], where Lg is th sum of
all labels&#8217; length.</li>
<li><strong>blank</strong> &#8211; (int, default: 0), the blank label index of Connectionist
Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1).</li>
<li><strong>norm_by_times</strong> &#8211; (bool, default: false), whether to normalize</li>
<li><strong>gradients by the number of time-step</strong><strong>, </strong><strong>which is also the</strong> (<em>the</em>) &#8211; </li>
<li><strong>length. There is no need to normalize the gradients</strong> (<em>sequence's</em>) &#8211; </li>
<li><strong>warpctc layer was follewed by a mean_op.</strong> (<em>if</em>) &#8211; </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The Connectionist Temporal Classification (CTC) loss,
which is a 2-D Tensor of the shape [batch_size, 1].</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
</dd></dl>

</div>
<div class="section" id="sequence-reshape">
<h3>sequence_reshape<a class="headerlink" href="#sequence-reshape" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2852
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_reshape</code><span class="sig-paren">(</span><em>input</em>, <em>new_dim</em><span class="sig-paren">)</span></dt>
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
<dd><p><strong>Sequence Reshape Layer</strong></p>
<p>This layer will rearrange the input sequences. The new dimension is set by
user. Length of each sequence is computed according to original length,
original dimension and new dimension. The following example will help to
illustrate the function of this layer:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>x is a LoDTensor:
    x.lod  = [[0, 2, 6]]
    x.data = [[1, 2], [3, 4],
              [5, 6], [7, 8], [9, 10], [11, 12]]
    x.dims = [6, 2]

set new_dim = 4

then out is a LoDTensor:
    out.lod  = [[0, 1, 3]]
    out.data = [[1, 2, 3, 4],
                [5, 6, 7, 8], [9, 10, 11, 12]]
    out.dims = [3, 4]
</pre></div>
</div>
<p>Currently, only 1-level LoDTensor is supported and please make sure
(original length * original dimension) can be divided by new dimension with
no remainder for each sequence.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; (LodTensor, default: LoDTensor&lt;float&gt;), a 2-D LoDTensor
with shape being [N, M] where M for dimension.</li>
<li><strong>new_dim</strong> (<em>int</em>) &#8211; New dimension which the input LoDTensor is reshaped to.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Reshaped LoDTensor according to new dimension.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">20</span><span class="p">],</span>
                  <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">x_reshaped</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">sequence_reshape</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">new_dim</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="transpose">
<h3>transpose<a class="headerlink" href="#transpose" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2908
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">transpose</code><span class="sig-paren">(</span><em>x</em>, <em>perm</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
<dd><p><strong>transpose Layer</strong></p>
<p>Permute the dimensions of <cite>input</cite> according to <cite>perm</cite>.</p>
<p>The <cite>i</cite>-th dimension  of the returned tensor will correspond to the
perm[i]-th dimension of <cite>input</cite>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; (Tensor), A Tensor.</li>
<li><strong>perm</strong> (<em>list</em>) &#8211; A permutation of the dimensions of <cite>input</cite>.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A transposed Tensor.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">15</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">x_transposed</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">perm</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="im2sequence">
<h3>im2sequence<a class="headerlink" href="#im2sequence" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
2943
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">im2sequence</code><span class="sig-paren">(</span><em>input</em>, <em>filter_size=1</em>, <em>stride=1</em>, <em>padding=0</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
<dd><p>Extracts image patches from the input tensor to form a tensor of shape
{input.batch_size * output_height * output_width, filter_size_H *
filter_size_W * input.channels} which is similar with im2col.
This op use filter / kernel to scan images and convert these images to
sequences. After expanding, the number of time step are
output_height * output_width for an image, in which output_height and
output_width are calculated by below equation:</p>
<div class="math">
\[output\_size = 1 +             (2 * padding + img\_size - block\_size + stride - 1) / stride\]</div>
<p>And the dimension of each time step is block_y * block_x * input.channels.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input should be a tensor in NCHW format.</li>
<li><strong>filter_size</strong> (<em>int|tuple|None</em>) &#8211; The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.</li>
<li><strong>stride</strong> (<em>int|tuple</em>) &#8211; The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.</li>
<li><strong>padding</strong> (<em>int|tuple</em>) &#8211; The padding size. If padding is a tuple, it can
contain two integers like (padding_H, padding_W) which means
padding_up = padding_down = padding_H and
padding_left = padding_right = padding_W. Or it can use
(padding_up, padding_left, padding_down, padding_right) to indicate
paddings of four direction. Otherwise, a scalar padding means
padding_up = padding_down = padding_left = padding_right = padding
Default: padding = 0.</li>
<li><strong>name</strong> (<em>int</em>) &#8211; The name of this layer. It is optional.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The output is a LoDTensor with shape
{input.batch_size * output_height * output_width,
filter_size_H * filter_size_W * input.channels}.
If we regard output as a matrix, each row of this matrix is
a step of a sequence.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">output</p>
</td>
</tr>
</tbody>
</table>
<p>Examples:</p>
<p>As an example:</p>
<blockquote>
<div><div class="highlight-text"><div class="highlight"><pre><span></span>Given:

x = [[[[ 6.  2.  1.]
       [ 8.  3.  5.]
       [ 0.  2.  6.]]

      [[ 2.  4.  4.]
       [ 6.  3.  0.]
       [ 6.  4.  7.]]]

     [[[ 6.  7.  1.]
       [ 5.  7.  9.]
       [ 2.  4.  8.]]

      [[ 1.  2.  1.]
       [ 1.  3.  5.]
       [ 9.  0.  8.]]]]

x.dims = {2, 2, 3, 3}

And:

filter = [2, 2]
stride = [1, 1]
padding = [0, 0]

Then:

output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
               [ 2.  1.  3.  5.  4.  4.  3.  0.]
               [ 8.  3.  0.  2.  6.  3.  6.  4.]
               [ 3.  5.  2.  6.  3.  0.  4.  7.]
               [ 6.  7.  5.  7.  1.  2.  1.  3.]
               [ 7.  1.  7.  9.  2.  1.  3.  5.]
               [ 5.  7.  2.  4.  1.  3.  9.  0.]
               [ 7.  9.  4.  8.  3.  5.  0.  8.]]

output.dims = {8, 9}

output.lod = [[0, 4, 8]]
</pre></div>
</div>
<p>The simple usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">output</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">im2sequence</span><span class="p">(</span>
    <span class="nb">input</span><span class="o">=</span><span class="n">layer</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">filter_size</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
</pre></div>
</div>
</div></blockquote>
</dd></dl>

</div>
<div class="section" id="nce">
<h3>nce<a class="headerlink" href="#nce" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3048
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">nce</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>num_total_classes</em>, <em>sample_weight=None</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>num_neg_samples=None</em><span class="sig-paren">)</span></dt>
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
<dd><p>Compute and return the noise-contrastive estimation training loss.
See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](<a class="reference external" href="http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf">http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf</a>).
By default this operator uses a uniform distribution for sampling.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> &#8211; (Tensor) A tensor of shape [batch_size, dim].
Duplicable: False  Optional: False</li>
<li><strong>label</strong> &#8211; (Tensor) A tensor of shape [batch_size, num_true_class]. &#8216;num_true_class&#8217; is the number of target classes in each sample.The number of target classes per sample should be same. If you have a variable number of target classes, you can pad them out to a constant number by either repeating them or by padding with an otherwise unused class.)
Duplicable: False  Optional: False</li>
<li><strong>weight</strong> &#8211; (Tensor) A tensor of shape [num_class, dim]. &#8216;num_class&#8217; is the total number of class.
Duplicable: False  Optional: False</li>
<li><strong>bias</strong> &#8211; (Tensor) A tensor of shape [num_class, 1]. &#8216;num_class&#8217; is the total number of class. It is a dispensable input.
Duplicable: False  Optional: True</li>
<li><strong>sample_weight</strong> &#8211; (Tensor) A tensor of shape [batch_size, 1] storing a weight for each sample. And it is a dispensable input. The default value of sample is 1.
Duplicable: False  Optional: True</li>
<li><strong>num_total_classes</strong> (<em>INT</em>) &#8211; Total number of classes in all samples.</li>
<li><strong>num_neg_samples</strong> (<em>INT</em>) &#8211; The number of negative classes. The default value is 10.</li>
<li><strong>custom_neg_classes</strong> (<em>INTS</em>) &#8211; This attribute only be used in unitest. Classes in this list wiil be used as negative classes for every samples. Under normal conditions, user should avoid setting this attribute.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="beam-search">
<h3>beam_search<a class="headerlink" href="#beam-search" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3085
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">beam_search</code><span class="sig-paren">(</span><em>pre_ids</em>, <em>ids</em>, <em>scores</em>, <em>beam_size</em>, <em>end_id</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
3086 3087 3088 3089 3090 3091 3092 3093
<dd><p>This function implements the beam search algorithm.</p>
</dd></dl>

</div>
<div class="section" id="row-conv">
<h3>row_conv<a class="headerlink" href="#row-conv" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3094
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">row_conv</code><span class="sig-paren">(</span><em>input</em>, <em>future_context_size</em>, <em>param_attr=None</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
<dd><p>Row Conv Operator. This layer will apply lookahead convolution to
<strong>input</strong>. The input variable should be a 2D LoDTensor with shape [T, D].
Parameters with shape [future_context_size + 1, D] will be created. The math
equation of row convolution is as follows:</p>
<div class="math">
\[Out_{i} = \sum_{j = i} ^ {i + \tau} X_{j} \odot W_{i - j}\]</div>
<p>In the above equation:</p>
<ul class="simple">
<li><span class="math">\(Out_{i}\)</span>: The i-th row of output variable with shape [1, D].</li>
<li><span class="math">\(\tau\)</span>: Future context size.</li>
<li><span class="math">\(X_{j}\)</span>: The j-th row of input variable with shape [1, D].</li>
<li><span class="math">\(W_{i-j}\)</span>: The (i-j)-th row of parameters with shape [1, D].</li>
</ul>
<p>More details about row_conv please refer to the paper     (<a class="reference external" href="http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf">http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf</a>) and
the design document     (<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645">https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645</a>).</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; Input variable, a 2D LoDTensor with shape [T, D].</li>
<li><strong>future_context_size</strong> (<em>int</em>) &#8211; Future context size. Please note, the shape
of convolution kernel is [future_context_size + 1, D].</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) &#8211; Attributes of parameters, including
name, initializer etc.</li>
<li><strong>act</strong> (<em>str</em>) &#8211; Non-linear activation to be applied to output variable.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The output tensor with same shape as input tensor.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">16</span><span class="p">],</span>
                <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">row_conv</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">future_context_size</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="multiplex">
<h3>multiplex<a class="headerlink" href="#multiplex" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3145
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">multiplex</code><span class="sig-paren">(</span><em>inputs</em>, <em>index</em><span class="sig-paren">)</span></dt>
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
<dd><p><strong>Multiplex Layer</strong></p>
<p>Referring to the given index variable, this layer selects rows from the
input variables to construct a multiplex variable. Assuming that there are
<span class="math">\(m\)</span> input variables and <span class="math">\(I_i\)</span> represents the i-th input
variable and <span class="math">\(i\)</span> is in [0, <span class="math">\(m\)</span>). All input variables are
tensors with same shape [<span class="math">\(d_0\)</span>, <span class="math">\(d_1\)</span>, ..., <span class="math">\(d_R\)</span>].
Please note that rank of the input tensor should be at least 2. Each input
variable will be treated as a 2-D matrix with shape [<span class="math">\(M\)</span>, <span class="math">\(N\)</span>]
where <span class="math">\(M\)</span> for <span class="math">\(d_0\)</span> and <span class="math">\(N\)</span> for <span class="math">\(d_1\)</span> * <span class="math">\(d_2\)</span>
* ... * <span class="math">\(d_R\)</span>. Let <span class="math">\(I_i[j]\)</span> be the j-th row of the i-th input
variable. The given index variable should be a 2-D tensor with shape
[<span class="math">\(M\)</span>, 1]. Let <cite>ID[i]</cite> be the i-th index value of the index variable.
Then the output variable will be a tensor with shape [<span class="math">\(d_0\)</span>,
<span class="math">\(d_1\)</span>, ..., <span class="math">\(d_R\)</span>]. If we treat the output tensor as a 2-D
matrix with shape [<span class="math">\(M\)</span>, <span class="math">\(N\)</span>] and let <span class="math">\(O[i]\)</span> be the i-th
row of the matrix, then <cite>O[i]</cite> is equal to <span class="math">\(I_{ID[i]}[i]\)</span>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>inputs</strong> (<em>list</em>) &#8211; A list of variables to gather from. All variables have the
same shape and the rank is at least 2.</li>
<li><strong>index</strong> (<em>Variable</em>) &#8211; Tensor&lt;int32&gt;, index variable which is a 2-D tensor
with shape [M, 1] where M is the batch size.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Multiplex variable gathered from input variables.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x1</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x1&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">x2</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x2&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">index</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;index&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;int32&#39;</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">multiplex</span><span class="p">(</span><span class="n">inputs</span><span class="o">=</span><span class="p">[</span><span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">],</span> <span class="n">index</span><span class="o">=</span><span class="n">index</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
</div>
<div class="section" id="ops">
<h2>ops<a class="headerlink" href="#ops" title="Permalink to this headline"></a></h2>
<div class="section" id="mean">
<h3>mean<a class="headerlink" href="#mean" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3199
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">mean</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
<dd><p>Mean Operator.</p>
<p>Out is a scalar which is the mean of all elements in X.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; The input of mean op
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The output of mean op</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="mul">
<h3>mul<a class="headerlink" href="#mul" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3220
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">mul</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
<dd><p>Mul Operator.</p>
<p>This operator is used to perform matrix multiplication for input $X$ and $Y$.</p>
<p>The equation is:</p>
<p>$$Out = X * Y$$</p>
<p>Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor), The first input tensor of mul op.
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor), The second input tensor of mul op.
Duplicable: False  Optional: False</li>
<li><strong>x_num_col_dims</strong> (<em>INT</em>) &#8211; (int, default 1), The mul_op can take tensors with more than two
dimensions as its inputs. If the input $X$ is a tensor with more
than two dimensions, $X$ will be flattened into a two-dimensional
matrix first. The flattening rule is: the first <cite>num_col_dims</cite>
will be flattened to form the first dimension of the final matrix
(the height of the matrix), and the rest <cite>rank(X) - num_col_dims</cite>
dimensions are flattened to form the second dimension of the final
matrix (the width of the matrix). As a result, height of the
flattened matrix is equal to the product of $X$&#8217;s first
<cite>x_num_col_dims</cite> dimensions&#8217; sizes, and width of the flattened
matrix is equal to the product of $X$&#8217;s last <cite>rank(x) - num_col_dims</cite>
dimensions&#8217; size. For example, suppose $X$ is a 6-dimensional
tensor with the shape [2, 3, 4, 5, 6], and <cite>x_num_col_dims</cite> = 3.
Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
[24, 30].</li>
<li><strong>y_num_col_dims</strong> (<em>INT</em>) &#8211; (int, default 1), The mul_op can take tensors with more than two,
dimensions as its inputs. If the input $Y$ is a tensor with more
than two dimensions, $Y$ will be flattened into a two-dimensional
matrix first. The attribute <cite>y_num_col_dims</cite> determines how $Y$ is
flattened. See comments of <cite>x_num_col_dims</cite> for more details.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(Tensor), The output tensor of mul op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="reshape">
<h3>reshape<a class="headerlink" href="#reshape" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3271
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reshape</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
<dd><p>Reshape Operator.</p>
<p>Reshape Input(X) into the shape specified by Attr(shape).</p>
<p>An example:
Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]</p>
<p>and target shape = [1, 4], the reshape operator will transform
the tensor X into a 2-D tensor: [[1, 2, 3, 4]]</p>
<p>One dimension in the target shape can be set -1, representing that its
size is unknown. In this case, the real dimension will be infered from
the original shape of Input(X) and other dimensions in the target shape.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; The input tensor of reshape operator.
Duplicable: False  Optional: False</li>
<li><strong>shape</strong> (<em>INTS</em>) &#8211; (vector&lt;int&gt;) Target shape of reshape operator.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output tensor of reshape operator.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="scale">
<h3>scale<a class="headerlink" href="#scale" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3304
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">scale</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
<dd><p>Scale operator</p>
<p>$$Out = scale*X$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor) Input tensor of scale operator.
Duplicable: False  Optional: False</li>
<li><strong>scale</strong> (<em>FLOAT</em>) &#8211; (float, default 1.0)The scaling factor of the scale operator.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(Tensor) Output tensor of scale operator.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="sigmoid-cross-entropy-with-logits">
<h3>sigmoid_cross_entropy_with_logits<a class="headerlink" href="#sigmoid-cross-entropy-with-logits" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3330
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sigmoid_cross_entropy_with_logits</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
<dd><p>SigmoidCrossEntropyWithLogits Operator.</p>
<p>This measures the element-wise probability error in classification tasks
in which each class is independent. This can be thought of as predicting labels
for a data-point, where labels are not mutually exclusive.
For example, a news article can be about politics, technology or sports
at the same time or none of these.</p>
<p>The logistic loss is given as follows:</p>
<blockquote>
<div>$$loss = -Labels * log(sigma(X)) - (1 - Labels) * log(1 - sigma(X))$$</div></blockquote>
<p>We know that $$sigma(X) = (1 / (1 + exp(-X)))$$. By substituting this we get:</p>
<blockquote>
<div>$$loss = X - X * Labels + log(1 + exp(-X))$$</div></blockquote>
<p>For stability and to prevent overflow of $$exp(-X)$$ when X &lt; 0,
we reformulate the loss as follows:</p>
<blockquote>
<div>$$loss = max(X, 0) - X * Labels + log(1 + exp(-<a href="#id3"><span class="problematic" id="id4">|X|</span></a>))$$</div></blockquote>
<p>Both the input <cite>X</cite> and <cite>Labels</cite> can carry the LoD (Level of Details) information.
However the output only shares the LoD with input <cite>X</cite>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor, default Tensor&lt;float&gt;), a 2-D tensor with shape N x D, where N is the batch size and D is the number of classes. This input is a tensor of logits computed by the previous  operator. Logits are unscaled log probabilities given as log(p/(1-p)).
Duplicable: False  Optional: False</li>
<li><strong>label</strong> &#8211; (Tensor, default Tensor&lt;float&gt;), a 2-D tensor of the same type and shape as X. This input is a tensor of probabalistic labels for each logit
Duplicable: False  Optional: False</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(Tensor, default Tensor&lt;float&gt;), a 2-D tensor with shape N x D  of elementwise logistic losses.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="elementwise-add">
<h3>elementwise_add<a class="headerlink" href="#elementwise-add" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3373
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_add</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3374 3375 3376 3377 3378 3379 3380
<dd><p>Limited Elementwise Add Operator.</p>
<p>The equation is:</p>
<p>$$Out = X + Y$$</p>
<p>$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.</p>
<p>There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
3381 3382 3383 3384 3385
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions</p>
<blockquote>
<div>of size 1 for $Y$ will be ignored for the consideration of subsequence.</div></blockquote>
<p>For case 2:</p>
<p>$Y$ will be broadcasted to match the shape of $X$ and axis should be
3386
set to index of the start dimension to broadcast $Y$ onto $X$.</p>
3387
<p>If axis is -1, it is treated as axis=rank(X)-rank(Y).</p>
3388 3389 3390 3391 3392 3393 3394
<dl class="docutils">
<dt>For example</dt>
<dd><div class="first last highlight-python"><div class="highlight"><pre><span></span><span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">5</span><span class="p">,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3395
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
</pre></div>
</div>
</dd>
</dl>
<p>Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor), The first input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor), The second input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1). The start dimension index for broadcasting Y onto X.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of elementwise op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="elementwise-div">
<h3>elementwise_div<a class="headerlink" href="#elementwise-div" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3427
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_div</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3428 3429 3430 3431 3432 3433 3434
<dd><p>Limited Elementwise Div Operator.</p>
<p>The equation is:</p>
<p>$$Out = X / Y$$</p>
<p>$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.</p>
<p>There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
3435 3436 3437 3438 3439
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions</p>
<blockquote>
<div>of size 1 for $Y$ will be ignored for the consideration of subsequence.</div></blockquote>
<p>For case 2:</p>
<p>$Y$ will be broadcasted to match the shape of $X$ and axis should be
3440
set to index of the start dimension to broadcast $Y$ onto $X$.</p>
3441
<p>If axis is -1, it is treated as axis=rank(X)-rank(Y).</p>
3442 3443 3444 3445 3446 3447 3448
<dl class="docutils">
<dt>For example</dt>
<dd><div class="first last highlight-python"><div class="highlight"><pre><span></span><span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">5</span><span class="p">,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3449
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
</pre></div>
</div>
</dd>
</dl>
<p>Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor), The first input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor), The second input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1). The start dimension index for broadcasting Y onto X.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of elementwise op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="elementwise-sub">
<h3>elementwise_sub<a class="headerlink" href="#elementwise-sub" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3481
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_sub</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3482 3483 3484 3485 3486 3487 3488
<dd><p>Limited Elementwise Sub Operator.</p>
<p>The equation is:</p>
<p>$$Out = X - Y$$</p>
<p>$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.</p>
<p>There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
3489 3490 3491 3492 3493
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions</p>
<blockquote>
<div>of size 1 for $Y$ will be ignored for the consideration of subsequence.</div></blockquote>
<p>For case 2:</p>
<p>$Y$ will be broadcasted to match the shape of $X$ and axis should be
3494
set to index of the start dimension to broadcast $Y$ onto $X$.</p>
3495
<p>If axis is -1, it is treated as axis=rank(X)-rank(Y).</p>
3496 3497 3498 3499 3500 3501 3502
<dl class="docutils">
<dt>For example</dt>
<dd><div class="first last highlight-python"><div class="highlight"><pre><span></span><span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">5</span><span class="p">,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3503
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
</pre></div>
</div>
</dd>
</dl>
<p>Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor), The first input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor), The second input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1). The start dimension index for broadcasting Y onto X.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of elementwise op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="elementwise-mul">
<h3>elementwise_mul<a class="headerlink" href="#elementwise-mul" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3535
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_mul</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3536 3537 3538 3539 3540 3541 3542
<dd><p>Limited Elementwise Mul Operator.</p>
<p>The equation is:</p>
<p>$$Out = X odotY$$</p>
<p>$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.</p>
<p>There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
3543 3544 3545 3546 3547
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions</p>
<blockquote>
<div>of size 1 for $Y$ will be ignored for the consideration of subsequence.</div></blockquote>
<p>For case 2:</p>
<p>$Y$ will be broadcasted to match the shape of $X$ and axis should be
3548
set to index of the start dimension to broadcast $Y$ onto $X$.</p>
3549
<p>If axis is -1, it is treated as axis=rank(X)-rank(Y).</p>
3550 3551 3552 3553 3554 3555 3556
<dl class="docutils">
<dt>For example</dt>
<dd><div class="first last highlight-python"><div class="highlight"><pre><span></span><span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">5</span><span class="p">,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3557
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
</pre></div>
</div>
</dd>
</dl>
<p>Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor), The first input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor), The second input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1). The start dimension index for broadcasting Y onto X.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of elementwise op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="elementwise-max">
<h3>elementwise_max<a class="headerlink" href="#elementwise-max" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3589
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_max</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3590 3591 3592 3593 3594 3595 3596
<dd><p>Limited Elementwise Max Operator.</p>
<p>The equation is:</p>
<p>$$Out = max(X, Y)$$</p>
<p>$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.</p>
<p>There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
3597 3598 3599 3600 3601
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions</p>
<blockquote>
<div>of size 1 for $Y$ will be ignored for the consideration of subsequence.</div></blockquote>
<p>For case 2:</p>
<p>$Y$ will be broadcasted to match the shape of $X$ and axis should be
3602
set to index of the start dimension to broadcast $Y$ onto $X$.</p>
3603
<p>If axis is -1, it is treated as axis=rank(X)-rank(Y).</p>
3604 3605 3606 3607 3608 3609 3610
<dl class="docutils">
<dt>For example</dt>
<dd><div class="first last highlight-python"><div class="highlight"><pre><span></span><span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">5</span><span class="p">,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3611
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
</pre></div>
</div>
</dd>
</dl>
<p>Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor), The first input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor), The second input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1). The start dimension index for broadcasting Y onto X.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of elementwise op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="elementwise-min">
<h3>elementwise_min<a class="headerlink" href="#elementwise-min" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3643
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_min</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3644 3645 3646 3647 3648 3649 3650
<dd><p>Limited Elementwise Max Operator.</p>
<p>The equation is:</p>
<p>$$Out = min(X, Y)$$</p>
<p>$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.</p>
<p>There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
3651 3652 3653 3654 3655
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions</p>
<blockquote>
<div>of size 1 for $Y$ will be ignored for the consideration of subsequence.</div></blockquote>
<p>For case 2:</p>
<p>$Y$ will be broadcasted to match the shape of $X$ and axis should be
3656
set to index of the start dimension to broadcast $Y$ onto $X$.</p>
3657
<p>If axis is -1, it is treated as axis=rank(X)-rank(Y).</p>
3658 3659 3660 3661 3662 3663 3664
<dl class="docutils">
<dt>For example</dt>
<dd><div class="first last highlight-python"><div class="highlight"><pre><span></span><span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">5</span><span class="p">,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3665
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
</pre></div>
</div>
</dd>
</dl>
<p>Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor), The first input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor), The second input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1). The start dimension index for broadcasting Y onto X.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of elementwise op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="elementwise-pow">
<h3>elementwise_pow<a class="headerlink" href="#elementwise-pow" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3697
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_pow</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3698 3699 3700 3701 3702 3703 3704
<dd><p>Limited Elementwise Pow Operator.</p>
<p>The equation is:</p>
<p>$$Out = X ^ Y$$</p>
<p>$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.</p>
<p>There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
3705 3706 3707 3708 3709
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions</p>
<blockquote>
<div>of size 1 for $Y$ will be ignored for the consideration of subsequence.</div></blockquote>
<p>For case 2:</p>
<p>$Y$ will be broadcasted to match the shape of $X$ and axis should be
3710
set to index of the start dimension to broadcast $Y$ onto $X$.</p>
3711
<p>If axis is -1, it is treated as axis=rank(X)-rank(Y).</p>
3712 3713 3714 3715 3716 3717 3718
<dl class="docutils">
<dt>For example</dt>
<dd><div class="first last highlight-python"><div class="highlight"><pre><span></span><span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">5</span><span class="p">,)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span>
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3719
<span class="n">shape</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">Y</span><span class="p">)</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="k">with</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span>
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
</pre></div>
</div>
</dd>
</dl>
<p>Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor), The first input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor), The second input tensor of elementwise op.
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1). The start dimension index for broadcasting Y onto X.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of elementwise op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="clip">
<h3>clip<a class="headerlink" href="#clip" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3751
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">clip</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
<dd><p>Clip Operator.</p>
<p>The clip operator limits the value of given input within an interval. The
interval is specified with arguments &#8216;min&#8217; and &#8216;max&#8217;:</p>
<p>$$
Out = min(max(X, min), max)
$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor)The input of clip op.The number of dimensions must be between [1, 9].
Duplicable: False  Optional: False</li>
<li><strong>min</strong> (<em>FLOAT</em>) &#8211; (float)Minimum value, under which element is replaced by min.</li>
<li><strong>max</strong> (<em>FLOAT</em>) &#8211; (float)Maximum value, above which element is replaced by max</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(Tensor)The output of clip op with shape as input(X)</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="clip-by-norm">
<h3>clip_by_norm<a class="headerlink" href="#clip-by-norm" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3782
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">clip_by_norm</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
<dd><p>ClipByNorm Operator.</p>
<p>This operator limits the L2 norm of the input $X$ within $max_norm$.
If the L2 norm of $X$ is less than or equal to $max_norm$, $Out$ will be
the same as $X$. If the L2 norm of $X$ is greater than $max_norm$, $X$ will
be linearly scaled to make the L2 norm of $Out$ equal to $max_norm$, as
shown in the following formula:</p>
<p>$$
Out = frac{max_norm * X}{norm(X)},
$$</p>
<p>where $norm(X)$ represents the L2 norm of $X$.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor) The input of clip_by_norm op.The number of dimensions must be between [1, 9].
Duplicable: False  Optional: False</li>
<li><strong>max_norm</strong> (<em>FLOAT</em>) &#8211; (float) The maximum norm value.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(Tensor) The output of clip_by_norm op with shape as input(X)</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="sequence-softmax">
<h3>sequence_softmax<a class="headerlink" href="#sequence-softmax" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3816
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_softmax</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
<dd><p>Sequence Softmax Operator.</p>
<p>SequenceSoftmaxOp computes the softmax activation among all time-steps for each
sequence. The dimension of each time-step should be 1. Thus, the shape of
input Tensor can be either [N, 1] or [N], where N is the sum of the length
of all sequences.</p>
<p>The algorithm works as follows:</p>
<blockquote>
<div>for i-th sequence in a mini-batch:</div></blockquote>
<p>$$
Out(X[lod[i]:lod[i+1]], :) = frac{exp(X[lod[i]:lod[i+1], :])} {sum(exp(X[lod[i]:lod[i+1], :]))}
$$</p>
<p>For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
and N turns out to be 7.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; (LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension of length 1.
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension of length 1.</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="sigmoid">
<h3>sigmoid<a class="headerlink" href="#sigmoid" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3850
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sigmoid</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
<dd><p>Sigmoid Activation Operator</p>
<p>$$out = frac{1}{1 + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Sigmoid operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Sigmoid operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="logsigmoid">
<h3>logsigmoid<a class="headerlink" href="#logsigmoid" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3871
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">logsigmoid</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
<dd><p>Logsigmoid Activation Operator</p>
<p>$$out = log frac{1}{1 + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of LogSigmoid operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of LogSigmoid operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="exp">
<h3>exp<a class="headerlink" href="#exp" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3892
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">exp</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
<dd><p>Exp Activation Operator.</p>
<p>$out = e^x$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Exp operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Exp operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="relu">
<h3>relu<a class="headerlink" href="#relu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3913
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">relu</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
<dd><p>Relu Activation Operator.</p>
<p>$out = max(x, 0)$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Relu operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Relu operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="tanh">
<h3>tanh<a class="headerlink" href="#tanh" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3934
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">tanh</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
<dd><p>Tanh Activation Operator.</p>
<p>$$out = frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Tanh operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Tanh operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="tanh-shrink">
<h3>tanh_shrink<a class="headerlink" href="#tanh-shrink" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3955
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">tanh_shrink</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
<dd><p>TanhShrink Activation Operator.</p>
<p>$$out = x - frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of TanhShrink operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of TanhShrink operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="softshrink">
<h3>softshrink<a class="headerlink" href="#softshrink" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
3976
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">softshrink</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
<dd><p>Softshrink Activation Operator.</p>
<p>$$
out = begin{cases}</p>
<blockquote>
<div>x - lambda, text{if } x &gt; lambda \
x + lambda, text{if } x &lt; -lambda \
0,  text{otherwise}
end{cases}</div></blockquote>
<p>$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of Softshrink operator
Duplicable: False  Optional: False</li>
<li><strong>lambda</strong> (<em>FLOAT</em>) &#8211; non-negative offset</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of Softshrink operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="sqrt">
<h3>sqrt<a class="headerlink" href="#sqrt" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4009
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sqrt</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
<dd><p>Sqrt Activation Operator.</p>
<p>$out = sqrt{x}$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Sqrt operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Sqrt operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="abs">
<h3>abs<a class="headerlink" href="#abs" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4030
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">abs</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
<dd><p>Abs Activation Operator.</p>
<p>$out = <a href="#id1"><span class="problematic" id="id2">|</span></a>x|$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Abs operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Abs operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="ceil">
<h3>ceil<a class="headerlink" href="#ceil" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4051
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">ceil</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
<dd><p>Ceil Activation Operator.</p>
<p>$out = ceil(x)$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Ceil operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Ceil operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="floor">
<h3>floor<a class="headerlink" href="#floor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4072
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">floor</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
<dd><p>Floor Activation Operator.</p>
<p>$out = floor(x)$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Floor operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Floor operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="round">
<h3>round<a class="headerlink" href="#round" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4093
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">round</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
<dd><p>Round Activation Operator.</p>
<p>$out = [x]$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Round operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Round operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="reciprocal">
<h3>reciprocal<a class="headerlink" href="#reciprocal" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4114
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reciprocal</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
<dd><p>Reciprocal Activation Operator.</p>
<p>$$out = frac{1}{x}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Reciprocal operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Reciprocal operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="log">
<h3>log<a class="headerlink" href="#log" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4135
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">log</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
<dd><p>Log Activation Operator.</p>
<p>$out = ln(x)$</p>
<p>Natural logarithm of x.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Log operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Log operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="square">
<h3>square<a class="headerlink" href="#square" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4157
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">square</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
<dd><p>Square Activation Operator.</p>
<p>$out = x^2$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Square operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Square operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="softplus">
<h3>softplus<a class="headerlink" href="#softplus" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4178
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">softplus</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
<dd><p>Softplus Activation Operator.</p>
<p>$out = ln(1 + e^{x})$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Softplus operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Softplus operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="softsign">
<h3>softsign<a class="headerlink" href="#softsign" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4199
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">softsign</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
<dd><p>Softsign Activation Operator.</p>
<p>$$out = frac{x}{1 + <a href="#id5"><span class="problematic" id="id6">|x|</span></a>}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Softsign operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Softsign operator</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="brelu">
<h3>brelu<a class="headerlink" href="#brelu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4220
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">brelu</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
<dd><p>BRelu Activation Operator.</p>
<p>$out = max(min(x, t_{min}), t_{max})$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of BRelu operator
Duplicable: False  Optional: False</li>
<li><strong>t_min</strong> (<em>FLOAT</em>) &#8211; The min marginal value of BRelu</li>
<li><strong>t_max</strong> (<em>FLOAT</em>) &#8211; The max marginal value of BRelu</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of BRelu operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="leaky-relu">
<h3>leaky_relu<a class="headerlink" href="#leaky-relu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4247
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">leaky_relu</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
<dd><p>LeakyRelu Activation Operator.</p>
<p>$out = max(x, alpha * x)$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of LeakyRelu operator
Duplicable: False  Optional: False</li>
<li><strong>alpha</strong> (<em>FLOAT</em>) &#8211; The small negative slope</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of LeakyRelu operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="soft-relu">
<h3>soft_relu<a class="headerlink" href="#soft-relu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4273
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">soft_relu</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
<dd><p>SoftRelu Activation Operator.</p>
<p>$out = ln(1 + exp(max(min(x, threshold), threshold))$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of SoftRelu operator
Duplicable: False  Optional: False</li>
<li><strong>threshold</strong> (<em>FLOAT</em>) &#8211; The threshold value of SoftRelu</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of SoftRelu operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="elu">
<h3>elu<a class="headerlink" href="#elu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4299
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elu</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
<dd><p>ELU Activation Operator.</p>
<p>Applies the following element-wise computation on the input according to
<a class="reference external" href="https://arxiv.org/abs/1511.07289">https://arxiv.org/abs/1511.07289</a>.</p>
<p>$out = max(0, x) + min(0, alpha * (e^x - 1))$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of ELU operator
Duplicable: False  Optional: False</li>
<li><strong>alpha</strong> (<em>FLOAT</em>) &#8211; The alpha value of ELU</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of ELU operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="relu6">
<h3>relu6<a class="headerlink" href="#relu6" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4327
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">relu6</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
<dd><p>Relu6 Activation Operator.</p>
<p>$out = min(max(0, x), 6)$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of Relu6 operator
Duplicable: False  Optional: False</li>
<li><strong>threshold</strong> (<em>FLOAT</em>) &#8211; The threshold value of Relu6</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of Relu6 operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="pow">
<h3>pow<a class="headerlink" href="#pow" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4353
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">pow</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
<dd><p>Pow Activation Operator.</p>
<p>$out = x^{factor}$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of Pow operator
Duplicable: False  Optional: False</li>
<li><strong>factor</strong> (<em>FLOAT</em>) &#8211; The exponential factor of Pow</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of Pow operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="stanh">
<h3>stanh<a class="headerlink" href="#stanh" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4379
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">stanh</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
<dd><p>STanh Activation Operator.</p>
<p>$$out = b * frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of STanh operator
Duplicable: False  Optional: False</li>
<li><strong>scale_a</strong> (<em>FLOAT</em>) &#8211; The scale parameter of a for the input</li>
<li><strong>scale_b</strong> (<em>FLOAT</em>) &#8211; The scale parameter of b for the input</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of STanh operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="hard-shrink">
<h3>hard_shrink<a class="headerlink" href="#hard-shrink" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4406
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">hard_shrink</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
<dd><p>HardShrink Activation Operator.</p>
<p>$$
out = begin{cases}</p>
<blockquote>
<div>x, text{if } x &gt; lambda \
x, text{if } x &lt; -lambda \
0,  text{otherwise}
end{cases}</div></blockquote>
<p>$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of HardShrink operator
Duplicable: False  Optional: False</li>
<li><strong>threshold</strong> (<em>FLOAT</em>) &#8211; The value of threshold for HardShrink</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of HardShrink operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="thresholded-relu">
<h3>thresholded_relu<a class="headerlink" href="#thresholded-relu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4439
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">thresholded_relu</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
<dd><p>ThresholdedRelu Activation Operator.</p>
<p>$$
out = begin{cases}</p>
<blockquote>
<div>x, text{if } x &gt; threshold \
0,  text{otherwise}
end{cases}</div></blockquote>
<p>$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of ThresholdedRelu operator
Duplicable: False  Optional: False</li>
<li><strong>threshold</strong> (<em>FLOAT</em>) &#8211; The threshold location of activation</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of ThresholdedRelu operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="hard-sigmoid">
<h3>hard_sigmoid<a class="headerlink" href="#hard-sigmoid" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4471
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">hard_sigmoid</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
<dd><p>HardSigmoid Activation Operator.</p>
<p>Segment-wise linear approximation of sigmoid(<a class="reference external" href="https://arxiv.org/abs/1603.00391">https://arxiv.org/abs/1603.00391</a>),
which is much faster than sigmoid.</p>
<p>$out = max(0, min(1, slope * x + shift))$</p>
<p>The slope should be positive. The offset can be either positive or negative.
The default slope and shift are set according to the above reference.
It is recommended to use the defaults for this activation.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of HardSigmoid operator
Duplicable: False  Optional: False</li>
<li><strong>slope</strong> (<em>FLOAT</em>) &#8211; Slope for linear approximation of sigmoid</li>
<li><strong>offset</strong> (<em>FLOAT</em>) &#8211; Offset for linear approximation of sigmoid</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of HardSigmoid operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="swish">
<h3>swish<a class="headerlink" href="#swish" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4503
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">swish</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
<dd><p>Swish Activation Operator.</p>
<p>$$out = frac{x}{1 + e^{- beta x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; Input of Swish operator
Duplicable: False  Optional: False</li>
<li><strong>beta</strong> (<em>FLOAT</em>) &#8211; Constant beta of swish operator</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Output of Swish operator</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>
<div class="section" id="tensor">
<h2>tensor<a class="headerlink" href="#tensor" title="Permalink to this headline"></a></h2>
<div class="section" id="create-tensor">
<h3>create_tensor<a class="headerlink" href="#create-tensor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4532
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">create_tensor</code><span class="sig-paren">(</span><em>dtype</em>, <em>name=None</em>, <em>persistable=False</em><span class="sig-paren">)</span></dt>
4533 4534 4535 4536 4537 4538 4539
<dd></dd></dl>

</div>
<div class="section" id="create-parameter">
<h3>create_parameter<a class="headerlink" href="#create-parameter" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4540
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">create_parameter</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>name=None</em>, <em>attr=None</em>, <em>is_bias=False</em>, <em>default_initializer=None</em><span class="sig-paren">)</span></dt>
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
<dd><p>Create a parameter
:param shape: shape of the parameter
:type shape: list[int]
:param dtype: element type of the parameter
:type dtype: string
:param attr: attributes of the parameter
:type attr: ParamAttr
:param is_bias: This can affect which default initializer is chosen</p>
<blockquote>
<div>when default_initializer is None. If is_bias,
initializer.Constant(0.0) will be used. Otherwise,
Xavier() will be used.</div></blockquote>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>default_initializer</strong> (<em>Initializer</em>) &#8211; initializer for the parameter</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">the created parameter</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">Parameter</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
<div class="section" id="create-global-var">
<h3>create_global_var<a class="headerlink" href="#create-global-var" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4572
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">create_global_var</code><span class="sig-paren">(</span><em>shape</em>, <em>value</em>, <em>dtype</em>, <em>persistable=False</em>, <em>force_cpu=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
<dd><p>Create a global variable. such as global_step
:param shape: shape of the variable
:type shape: list[int]
:param value: the value of the variable
:type value: float
:param dtype: element type of the parameter
:type dtype: string
:param persistable: if this variable is persistable
:type persistable: bool
:param force_cpu: force this variable to be on CPU
:type force_cpu: bool</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">the created Variable</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
</dd></dl>
4595 4596 4597 4598 4599 4600

</div>
<div class="section" id="cast">
<h3>cast<a class="headerlink" href="#cast" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4601
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">cast</code><span class="sig-paren">(</span><em>x</em>, <em>dtype</em><span class="sig-paren">)</span></dt>
4602 4603 4604 4605 4606 4607 4608 4609 4610
<dd><p>This function takes in the input with input_dtype
and casts it to the output_dtype as the output.</p>
</dd></dl>

</div>
<div class="section" id="concat">
<h3>concat<a class="headerlink" href="#concat" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4611
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">concat</code><span class="sig-paren">(</span><em>input</em>, <em>axis=0</em><span class="sig-paren">)</span></dt>
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
<dd><p><strong>Concat</strong></p>
<p>This function concatenates the input along the axis mentioned
and returns that as the output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>list</em>) &#8211; List of tensors to be concatenated</li>
<li><strong>axis</strong> (<em>int</em>) &#8211; Integer axis along which the tensors will be concatenated</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Output variable of the concatenation</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
</dd></dl>

</div>
<div class="section" id="sums">
<h3>sums<a class="headerlink" href="#sums" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4641
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sums</code><span class="sig-paren">(</span><em>input</em>, <em>out=None</em><span class="sig-paren">)</span></dt>
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
<dd><p>This function performs the sum operation on the input and returns the
result as the output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>input</strong> (<em>Variable|list</em>) &#8211; The input tensor that has the elements
that need to be summed up.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><dl class="docutils">
<dt>The tensor type variable that has the sum of input</dt>
<dd>written to it.</dd>
</dl>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
</dd></dl>

</div>
<div class="section" id="assign">
<h3>assign<a class="headerlink" href="#assign" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4669
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">assign</code><span class="sig-paren">(</span><em>input</em>, <em>output</em><span class="sig-paren">)</span></dt>
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
<dd><p><strong>Assign</strong></p>
<p>This function copies the <em>input</em> Variable to the <em>output</em> Variable.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable|numpy.ndarray</em>) &#8211; The source variable</li>
<li><strong>output</strong> (<em>Variable</em>) &#8211; The destination variable</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The destination variable that was supplied as the <em>output</em>.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
</dd></dl>

</div>
<div class="section" id="fill-constant-batch-size-like">
<h3>fill_constant_batch_size_like<a class="headerlink" href="#fill-constant-batch-size-like" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4698
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">fill_constant_batch_size_like</code><span class="sig-paren">(</span><em>input</em>, <em>shape</em>, <em>dtype</em>, <em>value</em>, <em>input_dim_idx=0</em>, <em>output_dim_idx=0</em><span class="sig-paren">)</span></dt>
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
<dd><p><strong>fill_constant_batch_size_like</strong></p>
<p>This function creates a tensor of specified <em>shape</em>, <em>dtype</em> and batch size,
and initializes this with a constant supplied in <em>value</em>. The batch size is
obtained from the <cite>input</cite> tensor.</p>
<p>It also sets <em>stop_gradient</em> to True.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; Tensor whose dimensions will be used to get batch size</li>
<li><strong>shape</strong> (<em>tuple|list|None</em>) &#8211; Shape of output tensor</li>
4711
<li><strong>dtype</strong> (<em>np.dtype|core.VarDesc.VarType|str</em>) &#8211; Data type of output tensor</li>
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
<li><strong>value</strong> (<em>float</em>) &#8211; Constant value to initialize the output tensor</li>
<li><strong>input_dim_idx</strong> (<em>int</em>) &#8211; Index of input&#8217;s batch size dimension</li>
<li><strong>output_dim_idx</strong> (<em>int</em>) &#8211; Index of output&#8217;s batch size dimension</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the output</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fill_constant_batch_size_like</span><span class="p">(</span>
    <span class="nb">input</span><span class="o">=</span><span class="n">like</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;int64&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="fill-constant">
<h3>fill_constant<a class="headerlink" href="#fill-constant" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4738
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">fill_constant</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>value</em>, <em>force_cpu=False</em>, <em>out=None</em><span class="sig-paren">)</span></dt>
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
<dd><p><strong>fill_constant</strong></p>
<p>This function creates a tensor with specified <cite>shape</cite> and <cite>dtype</cite>, and
initializes it with a constant specifed by <cite>value</cite>.</p>
<p>The attribute <cite>stop_gradient</cite> of the created tensor is set to True.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>shape</strong> (<em>tuple|list|None</em>) &#8211; Shape of the output tensor.</li>
4749
<li><strong>dtype</strong> (<em>np.dtype|core.VarDesc.VarType|str</em>) &#8211; Data type of the output tensor.</li>
4750 4751
<li><strong>value</strong> (<em>float</em>) &#8211; The constant value used to initialize the output tensor.</li>
<li><strong>out</strong> (<em>Variable</em>) &#8211; The output tensor.</li>
4752
<li><strong>force_cpu</strong> (<em>True|False</em>) &#8211; data should be on CPU if set true.</li>
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the output.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fill_constant</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;int64&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="ones">
<h3>ones<a class="headerlink" href="#ones" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4775
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">ones</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>force_cpu=False</em><span class="sig-paren">)</span></dt>
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
<dd><p><strong>ones</strong></p>
<p>This function creates a tensor of specified <em>shape</em> and
<em>dtype</em>, and initializes this with 1.</p>
<p>It also sets <em>stop_gradient</em> to True.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>shape</strong> (<em>tuple|list|None</em>) &#8211; Shape of output tensor</li>
4786
<li><strong>dtype</strong> (<em>np.dtype|core.VarDesc.VarType|str</em>) &#8211; Data type of output tensor</li>
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the output</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;int64&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="zeros">
<h3>zeros<a class="headerlink" href="#zeros" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
4809
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">zeros</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>force_cpu=False</em><span class="sig-paren">)</span></dt>
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
<dd><p><strong>zeros</strong></p>
<p>This function creates a tensor of specified <em>shape</em> and
<em>dtype</em>, and initializes this with 0.</p>
<p>It also sets <em>stop_gradient</em> to True.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>shape</strong> (<em>tuple|list|None</em>) &#8211; Shape of output tensor</li>
4820
<li><strong>dtype</strong> (<em>np.dtype|core.VarDesc.VarType|str</em>) &#8211; Data type of output tensor</li>
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the output</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;int64&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="data_feeder.html" class="btn btn-neutral float-right" title="data_feeder" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
4852
        <a href="index.html" class="btn btn-neutral" title="Fluid" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
4882
            URL_ROOT:'../',
4883 4884 4885 4886 4887 4888 4889
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
4890 4891 4892
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
4893 4894 4895 4896 4897 4898
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
4899
    <script type="text/javascript" src="../_static/js/theme.js"></script>
4900 4901 4902 4903
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
4904
  <script src="../_static/js/paddle_doc_init.js"></script> 
4905 4906 4907

</body>
</html>