variable_index.py 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20 21 22 23

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
def is_list_tuple(index, contain_type):
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

    out_dims_shape[:index_dims_size - 1] = index_dims[1:]

    out_dims_shape[index_dims_size - 1:] = var_dims[index_dims[0]:]
    return out_dims_shape


class SliceInfo:
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
70
        self.dtype = None
W
WeiXin 已提交
71 72 73 74 75 76 77 78

    def update(self, index):
        if is_list_tuple(index, int) or isinstance(index, (
                paddle.fluid.Variable, np.ndarray)):
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
79 80 81 82 83 84 85 86
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}.".
                        format(index.dtype, self.dtype))

W
WeiXin 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
                    # broadcast 
                    cur_shape = paddle.broadcast_shape(self.pre_shape,
                                                       index.shape)
                    for i in range(len(self.indexes)):
                        self.indexes[i] = paddle.broadcast_to(self.indexes[i],
                                                              cur_shape)
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
                "Index should be list/tuple of int or Tensor, but received {}.".
                format(index))

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
                        type(index)))

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
            axes = list(range(1, len(self.pre_shape) + 1)) + [0, ]

        else:
            raise ValueError(
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed".
                format(len(tensor_shape), self.pre_shape[0]))

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):

        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
                core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP64
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

        gather_tensor_shape = get_list_index_shape(
            tensor.shape, [len(self.indexes), ] + list(self.indexes[-1].shape))

        value_dims_bd = [1, ] * len(gather_tensor_shape)
        value_dims_bd[-len(value.shape):] = list(value.shape)

        for i in range(len(gather_tensor_shape)):
            if not (value_dims_bd[i] == gather_tensor_shape[i] or
                    value_dims_bd[i] == 1):
                raise ValueError("{} can not broadcast into {}".format(
                    value.shape, gather_tensor_shape))

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

        value_1d = value_broadcast.reshape([-1] + gather_tensor_shape[len(
            index.shape) - 1:])

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
            self.shape_stride(tensor.shape[:index.shape[-1]]))
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1]:]))
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


194 195 196 197 198 199 200 201 202 203 204 205
def replace_ellipsis(var, item):
    from .framework import Variable
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
206
    item_remove_var = [
207 208
        ele for ele in item
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
209
    ]
210 211 212 213 214 215 216 217 218 219 220 221
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
        item[ell_idx:ell_idx + 1] = [slice(None)] * (
222
            len(var.shape) - len(item) + item.count(None) + 1)
223 224 225 226

    return item


W
WeiXin 已提交
227 228 229 230 231 232 233 234 235 236
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


237 238 239 240 241 242 243 244 245 246 247
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
        if len(ele.shape) == 1 and ele.shape[0] == 1:
            return True
    return False


def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable
    from .layers import utils

    if utils._contain_var(attr):
        inputs[tensor_attr_name] = utils._convert_to_tensor_list(
            attr, dtype="int64")
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
285
    from .framework import default_main_program, Variable
W
WeiXin 已提交
286 287 288
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
289 290 291 292 293 294 295 296 297

    if not isinstance(item, tuple):
        item = (item, )

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
298
    reverse_axes = []
299 300

    use_strided_slice = False
W
WeiXin 已提交
301
    item = replace_ndarray(item)
302
    item = replace_ellipsis(var, item)
303
    item, none_axes = replace_none(item)
W
WeiXin 已提交
304
    slice_info = SliceInfo()
305 306 307

    for dim, slice_item in enumerate(item):
        if is_integer_or_scalar_tensor(slice_item):
308 309 310 311 312 313 314 315 316 317 318 319 320
            if isinstance(slice_item,
                          int) and var.shape[dim] is not None and var.shape[
                              dim] >= 0 and slice_item >= var.shape[dim]:
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                #
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
                    % (slice_item, dim, dim, var.shape[dim]))
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

336 337 338 339
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
                end = MAX_INTEGER if step > 0 else -1
340

341
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
342
            all_bool = True
W
WeiXin 已提交
343 344 345 346 347

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

348
            for i in slice_item:
Z
zyfncg 已提交
349 350 351
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
352 353
                    raise TypeError("Only support int or bool in index list.")

354 355
            if len(item) != 1:
                raise IndexError(
Z
zyfncg 已提交
356
                    "When index contains a list, its length must be 1, but received {}.".
357
                    format(len(item)))
Z
zyfncg 已提交
358 359 360 361 362 363 364
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
                        "The dimension of bool index doesn't match indexed array along "\
                        "dimension 0, the target dimension is {}, but received {}.".
                        format(var.shape[0], len(slice_item)))
365 366 367 368
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
369 370 371 372 373 374 375 376 377
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
378

379 380 381
            from .layers import assign
            from ..tensor import index_select

382
            idx = assign(np.array(slice_item).astype("int32"))
383 384
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
385
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
386
            if len(item) == 1:
387

W
WeiXin 已提交
388 389
                from ..tensor import index_select, gather_nd
                from .layers.nn import where
Z
zyfncg 已提交
390

W
WeiXin 已提交
391 392
                if slice_item.dtype == paddle.bool:
                    if len(slice_item.shape) > len(var.shape):
Z
zyfncg 已提交
393
                        raise IndexError(
W
WeiXin 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
                            "The dims of bool index doesn't match indexed array, "
                            "the dims of bool index except to be equal or less "
                            "than {}, but received {}.".format(
                                len(var.shape), len(slice_item.shape)))
                    for i, dim_len in enumerate(slice_item.shape):
                        if dim_len != var.shape[i]:
                            raise IndexError(
                                "The dimension of bool index doesn't match indexed array along "\
                                "dimension {}, the target dimension is {}, but received {}.".
                                format(i, var.shape[i], dim_len))
                    bool_2_idx = where(slice_item == True)
                    return gather_nd(var, bool_2_idx)
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
415

416 417
        else:
            raise IndexError(
W
WeiXin 已提交
418
                "Valid index accept int or slice or ellipsis or list, but received {}.".
419 420 421 422 423 424 425 426
                format(slice_item))

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
427 428 429 430 431 432 433
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
                "Valid index accept int or slice or ellipsis or list, but received {}.".
                format(item))
        return slice_info.get_item(var)

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axes
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
    deal_attrs(attrs, steps, "strides", "StridesTensorList", inputs,
               infer_flags)
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        target_block = default_main_program().current_block()
        op_type = "strided_slice" if use_strided_slice else "slice"

        slice_out_var = target_block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_" +
                                                         op_type),
            dtype=var.dtype)
        target_block.append_op(
            type=op_type,
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)
        out = slice_out_var

467
    if len(reverse_axes) > 0:
468
        from .layers.tensor import reverse
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        out = reverse(out, axis=reverse_axes)

    # Deal with cases when all axes are decreased.
    # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
    # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
    # For example:
    # # x.shape: (2,3,4)
    # out = x[0, 1, 1, None] # out.shape : (1)
    if len(decrease_axes) == len(var.shape):
        none_axes = none_axes[1:]

    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        # Deal with cases when all axes are decreased.
        # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
        # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 1, 1, None] # out.shape : (1)

        from ..tensor import unsqueeze
        out = unsqueeze(out, axis=none_axes)
499 500 501 502 503 504 505 506

    return out


def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable

    inputs = {'Input': var}
W
WeiXin 已提交
507 508 509
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
510 511 512 513 514 515 516 517 518 519
    # 1. Parse item
    if not isinstance(item, tuple):
        item = (item, )

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
520
    item = replace_ndarray(item)
521
    item = replace_ellipsis(var, item)
522
    item, none_axes = replace_none(item)
W
WeiXin 已提交
523
    slice_info = SliceInfo()
Z
zyfncg 已提交
524 525
    dim = 0
    for _, slice_item in enumerate(item):
526 527 528 529 530 531 532 533 534 535 536 537
        if is_integer_or_scalar_tensor(slice_item):
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
538
                dim += 1
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
                    "but received step is {}.".format(step))

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
                    raise TypeError("Doesn't support {} in index list.".format(
                        type(i)))

            if len(item) != 1:
                raise IndexError(
                    "When index contains a bool list, its length must be 1, but received {}.".
                    format(len(item)))

            from .layers import assign
            idx_tensor = assign(slice_item)
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
                        "When index contains a bool tensor, its length must be 1, but received {}.".
                        format(len(item)))
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
588 589
        else:
            raise IndexError(
Z
zyfncg 已提交
590 591
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
                "but received {}.".format(slice_item))
592 593 594 595 596 597

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
598
        dim += 1
W
WeiXin 已提交
599 600 601 602 603 604
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
                "Valid index accept int or slice or ellipsis or list, but received {}.".
                format(item))
        return slice_info.set_item(var, value)
605 606 607 608 609
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
610 611
        'decrease_axes': decrease_axes,
        'none_axes': none_axes
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    }

    from .layers import utils
    if utils._contain_var(starts):
        inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
        del attrs['starts']
    if utils._contain_var(ends):
        inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
        del attrs['ends']
    if utils._contain_var(steps):
        inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
    #  2.1 value is an integer of float
    if isinstance(value, (int, float)):
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
639
            values = [int(v) for v in value.flat]
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.FP64:
            value_name = "fp64_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in value.flat]
        else:
            raise TypeError(
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        attrs[value_name] = values
        attrs["shape"] = shape

W
wanghuancoder 已提交
660
    elif isinstance(value, (Variable, core.eager.Tensor)):
661 662 663 664 665 666 667
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
                type(value)))

W
wanghuancoder 已提交
668 669 670
    if paddle.fluid.framework.in_dygraph_mode(
    ) and not paddle.fluid.framework._in_eager_mode():
        # TODO(pangyoki) add inplace(BumpInplaceVersion) if need
Z
zyfncg 已提交
671 672
        var._bump_inplace_version()

673 674
    cur_block = default_main_program().current_block()
    cur_block.append_op(
Z
zyfncg 已提交
675 676 677 678 679
        type="set_value",
        inputs=inputs,
        outputs={'Out': var},
        attrs=attrs,
        inplace_map={"Input": "Out"})
680 681

    return var
Z
zyfncg 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717


# the item is a tensor of bool 
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
        raise IndexError("The dims of bool index doesn't match indexed array, "
                         "the dims of bool index except to be equal or less "
                         "than {}, but received {}.".format(
                             len(var.shape), len(item.shape)))
    for i, dim_len in enumerate(item.shape):
        if dim_len != var.shape[i]:
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".
                format(i, var.shape[i], dim_len))

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from .layers import assign
        from .layers.nn import where
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
            value = assign(value).cast(var.dtype)

        idx = where(item)
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

    from .layers.control_flow import cond
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var