cross_entropy_op.h 1.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include "paddle/operators/type_alias.h"
Q
Qiao Longfei 已提交
17 18 19 20 21

namespace paddle {
namespace operators {

template <typename Place, typename T>
22
class OnehotCrossEntropyOpKernel : public OpKernel {
Q
Qiao Longfei 已提交
23 24 25
public:
  constexpr T LOG_THRESHOLD() const { return static_cast<T>(1e-20); }

26 27
  void Compute(const KernelContext& context) const override {
    auto X = context.Input(0)->Get<Tensor>();
Q
Qiao Longfei 已提交
28
    const T* X_data = X.data<T>();
29 30
    const int* label_data = context.Input(1)->Get<Tensor>().data<int>();
    auto* Y = context.Output(0)->GetMutable<Tensor>();
Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

    Y->mutable_data<T>(context.GetPlace());

    T* Y_data = Y->data<T>();

    int batch_size = X.dims()[0];
    int class_num = X.dims()[1];

    // Y[i] = -log(X[i][j])
    for (int i = 0; i < batch_size; ++i) {
      Y_data[i] = -std::log(
          std::max(X_data[i * class_num + label_data[i]], LOG_THRESHOLD()));
    }
  }
};

}  // namespace operators
}  // namespace paddle