model.py 64.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
from collections import Iterable

from paddle import fluid
from paddle.fluid.framework import in_dygraph_mode, Variable
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.layers.utils import flatten
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
from paddle.fluid.incubate.fleet.base import role_maker
from paddle.io import DataLoader, Dataset

from .distributed import DistributedBatchSampler, _all_gather, prepare_distributed_context, _parallel_context_initialized
from .metrics import Metric
from .callbacks import config_callbacks
41 42
from .utils import to_list, to_numpy, flatten_list, restore_flatten_list, extract_args
from .device import _get_device
43 44 45 46 47 48 49

__all__ = [
    'Model',
    'Input',
]


50
class Input(fluid.dygraph.Layer):
51
    """
52
    Define inputs the model.
53

54 55 56 57 58 59 60 61 62 63 64 65 66
    Args:
        name (str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
        shape (tuple(integers)|list[integers]): List|Tuple of integers
            declaring the shape. You can set "None" or -1 at a dimension
            to indicate the dimension can be of any size. For example,
            it is useful to set changeable batch size as "None" or -1.
        dtype (np.dtype|VarType|str, optional): The type of the data. Supported
            dtype: bool, float16, float32, float64, int8, int16, int32, int64,
            uint8. Default: float32.

    Examples:
        .. code-block:: python
67

68
        import paddle.incubate.hapi as hapi
69

70 71 72
        input = hapi.Input('x', [None, 784], 'float32')
        label = hapi.Input('label', [None, 1], 'int64')
    """
73

74
    def __init__(self, name, shape=None, dtype='float32'):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        super(Input, self).__init__()
        self.shape = shape
        self.dtype = dtype
        self.name = name

    def forward(self):
        return fluid.data(self.name, shape=self.shape, dtype=self.dtype)


class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    def train_batch(self, inputs, labels=None):
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

    def test_batch(self, inputs):
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
138
        return self.model.network.parameters(*args, **kwargs)
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
157
        _save(self.model.network.state_dict(), param_path)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
            [param for param, state in param_state_pairs],
            global_scope(), executor)
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
                        accum_name = name if opt_name is None else name[len(
                            opt_name) + 1:]
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
                                for state_key in sorted(
                                        state.keys(),
                                        key=lambda x: len(x),
                                        reverse=True):
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
                                        opt_unq_name = state_key[len(
                                            param_name + "_"):prefix_offset]
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
329

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
353 354 355 356 357

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
389 390 391 392
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
            inputs = [k.forward() for k in to_list(inputs)]
            labels = [k.forward() for k in to_list(labels)]
393
            self._label_vars[mode] = labels
394
            outputs = to_list(self.model.network.forward(*inputs))
395 396

            if mode != 'test' and self.model._loss_function:
397
                losses = self.model._loss_function(*(outputs + labels))
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
                    metrics.append(
                        to_list(metric.add_metric_op(*(outputs + labels))))

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
                    dist_strategy = DistributedStrategy()
                    dist_strategy.mode = "collective"
                    dist_strategy.collective_mode = "grad_allreduce"
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
430
            "loss": to_list(losses),
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        if self._nranks > 1:
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
489 490
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
491 492 493 494 495 496 497 498 499 500 501 502 503

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
    def train_batch(self, inputs, labels=None):
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
504
        self.model.network.train()
505 506
        self.mode = 'train'
        inputs = to_list(inputs)
507 508 509
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

510 511
        if self._nranks > 1:
            outputs = self.ddp_model.forward(* [to_variable(x) for x in inputs])
512 513
            losses = self.model._loss_function(*(to_list(outputs) + labels))
            losses = to_list(losses)
514 515 516 517 518
            final_loss = fluid.layers.sum(losses)
            final_loss = self.ddp_model.scale_loss(final_loss)
            final_loss.backward()
            self.ddp_model.apply_collective_grads()
        else:
519 520
            outputs = self.model.network.forward(
                * [to_variable(x) for x in inputs])
521 522
            losses = self.model._loss_function(*(to_list(outputs) + labels))
            losses = to_list(losses)
523 524 525 526
            final_loss = fluid.layers.sum(losses)
            final_loss.backward()

        self.model._optimizer.minimize(final_loss)
527
        self.model.network.clear_gradients()
528 529
        metrics = []
        for metric in self.model._metrics:
530
            metric_outs = metric.add_metric_op(*(to_list(outputs) + labels))
531 532 533 534 535 536 537
            m = metric.update(* [to_numpy(m) for m in to_list(metric_outs)])
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
538
        self.model.network.eval()
539 540
        self.mode = 'eval'
        inputs = to_list(inputs)
541 542 543
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

544
        outputs = self.model.network.forward(* [to_variable(x) for x in inputs])
545
        if self.model._loss_function:
546 547 548
            losses = self.model._loss_function(*(to_list(outputs) + labels))
            losses = to_list(losses)

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

574
            metric_outs = metric.add_metric_op(*(to_list(outputs) + labels))
575 576 577
            m = metric.update(* [to_numpy(m) for m in to_list(metric_outs)])
            metrics.append(m)

578 579 580 581 582 583
        if self.model._loss_function and len(metrics):
            return [to_numpy(l) for l in losses], metrics
        elif self.model._loss_function:
            return [to_numpy(l) for l in losses]
        else:
            return metrics
584 585

    def test_batch(self, inputs):
586
        self.model.network.eval()
587 588
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
589
        outputs = self.model.network.forward(*inputs)
590 591 592 593 594 595
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
596
        return self.model.network.parameters(*args, **kwargs)
597 598

    def save(self, path):
599
        params = self.model.network.state_dict()
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
        fluid.save_dygraph(params, path)
        if self.model._optimizer is None:
            return
        if self.model._optimizer.state_dict():
            optim = self.model._optimizer.state_dict()
            fluid.save_dygraph(optim, path)

    def load(self, param_state_pairs, optim_state):
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

        # If optimizer performs set_dict when state vars haven't been created,
        # which would happen when set_dict before minimize, the state would be
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
629
        param_names = [param.name for param in self.model.network.parameters()]
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        for var_name, state_var in sorted(
                optim_state.items(), key=lambda x: len(x[0]), reverse=True):
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

        self.model._optimizer.set_dict(converted_state)


664
class Model(object):
665 666 667 668 669 670 671 672
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
    switched by `fluid.enable_dygraph()`. The usage is as follows.
    But note, the switching between dynamic and static should be before
    instantiating a Model. The input description, i.e, hapi.Input,
    must be required for static graph.

673 674 675 676 677 678 679 680 681 682 683 684 685
    Args:
        network (fluid.dygraph.Layer): The network is an instance of
            fluid.dygraph.Layer.
        inputs (Input|list|dict|None): `inputs`, entry points of network,
            could be a Input layer, or lits of Input layers,
            or dict (name: Input), or None. For static graph,
            inputs must be set. For dynamic graph, it could be None.
        labels (Input|list|None): `labels`, entry points of network,
            could be a Input layer or lits of Input layers, or None.
            For static graph, if labels is required in loss_function,
            labels must be set. Otherwise, it could be None.


686 687 688
    Usage:
        .. code-block:: python

689
        import paddle
690
        import paddle.fluid as fluid
691 692 693
        import paddle.incubate.hapi as hapi
        
        class MyNet(fluid.dygraph.Layer):
694
            def __init__(self, classifier_act=None):
695
                super(MyNet, self).__init__()
696 697
                self._fc1 = fluid.dygraph.Linear(784, 200, act=classifier_act)

698
            def forward(self, x):
699
                y = self._fc1(x)
700
                return y
701 702
        
        device = hapi.set_device('gpu')
703 704 705
        # if use static graph, do not set
        fluid.enable_dygraph(device)
        
706 707 708
        # inputs and labels are not required for dynamic graph.
        input = hapi.Input('x', [None, 784], 'float32')
        label = hapi.Input('label', [None, 1], 'int64')
709
        
710 711 712
        model = hapi.Model(MyNet(), input, label)
        optim = fluid.optimizer.SGD(learning_rate=1e-3,
            parameter_list=model.parameters())
713
        model.prepare(optim,
714
                      paddle.nn.CrossEntropyLoss(),
715 716 717
                      hapi.metrics.Accuracy())
        
        mnist_data = hapi.datasets.MNIST(mode='train', chw_format=False)
718
        model.fit(mnist_data, epochs=2, batch_size=32, verbose=1)
719

720 721
    """

722
    def __init__(self, network, inputs=None, labels=None):
723
        self.mode = 'train'
724
        self.network = network
725 726 727 728 729 730 731 732
        self._inputs = None
        self._labels = None
        self._loss_function = None
        self._loss_weights = None
        self._optimizer = None
        self._optimizer = None
        self._test_dataloader = None

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
        if not in_dygraph_mode():
            if not isinstance(inputs, (list, dict, Input)):
                raise TypeError(
                    "'inputs' must be list or dict in static graph mode")
        if inputs is None:
            self._inputs = [Input(name=n) \
                for n in extract_args(self.network.forward) if n != 'self']
        elif isinstance(input, dict):
            self._inputs = [inputs[n] \
                for n in extract_args(self.network.forward) if n != 'self']
        else:
            self._inputs = to_list(inputs)

        self._labels = to_list(labels)

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        # init backend
        if fluid.in_dygraph_mode():
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

    def train_batch(self, inputs, labels=None):
        """
        Run one training step on a batch of data.

        Args:
            inputs (list): A list of numpy.ndarray, each is a batch of
                input data.
            labels (list): A list of numpy.ndarray, each is a batch of
                input label. If has no labels, set None. Default is None.

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
774
              import paddle
775
              import paddle.fluid as fluid
776
              import paddle.incubate.hapi as hapi
777

778
              class MyNet(fluid.dygraph.Layer):
779
                  def __init__(self, classifier_act=None):
780
                      super(MyNet, self).__init__()
781 782
                      self._fc = fluid.dygraph.Linear(784, 10, act=classifier_act)

783 784 785 786 787 788 789
                  def forward(self, x):
                      y = self._fc(x)
                      return y

              device = hapi.set_device('gpu')
              fluid.enable_dygraph(device)

790 791 792
              input = hapi.Input('x', [None, 784], 'float32')
              label = hapi.Input('label', [None, 1], 'int64')
              model = hapi.Model(MyNet(), input, label)
793 794
              optim = fluid.optimizer.SGD(learning_rate=1e-3,
                  parameter_list=model.parameters())
795
              model.prepare(optim, paddle.nn.CrossEntropyLoss())
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.train_batch([data], [label])
              print(loss)
        """
        return self._adapter.train_batch(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
            inputs (list): A list of numpy.ndarray, each is a batch of
                input data.
            labels (list): A list of numpy.ndarray, each is a batch of
                input label. If has no labels, set None. Default is None.

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
823
              import paddle
824
              import paddle.fluid as fluid
825
              import paddle.incubate.hapi as hapi
826

827
              class MyNet(fluid.dygraph.Layer):
828
                  def __init__(self, classifier_act=None):
829
                      super(MyNet, self).__init__()
830 831
                      self._fc = fluid.dygraph.Linear(784, 10, act=classifier_act)

832 833 834 835
                  def forward(self, x):
                      y = self._fc(x)
                      return y

836
              device = hapi.set_device('gpu')
837 838
              fluid.enable_dygraph(device)

839 840 841
              input = hapi.Input('x', [None, 784], 'float32')
              label = hapi.Input('label', [None, 1], 'int64')
              model = hapi.Model(MyNet(), input, label)
842 843 844
              optim = fluid.optimizer.SGD(learning_rate=1e-3,
                  parameter_list=model.parameters())
              model.prepare(optim,
845
                            paddle.nn.CrossEntropyLoss())
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.eval_batch([data], [label])
              print(loss)
        """
        return self._adapter.eval_batch(inputs, labels)

    def test_batch(self, inputs):
        """
        Run one testing step on a batch of data.

        Args:
            inputs (list): A list of numpy.ndarray, each is a batch of
                input data.

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
            
              import numpy as np
              import paddle.fluid as fluid
871
              import paddle.incubate.hapi as hapi
872

873
              class MyNet(fluid.dygraph.Layer):
874
                  def __init__(self):
875
                      super(MyNet, self).__init__()
876 877 878 879 880
                      self._fc = fluid.dygraph.Linear(784, 1, act='softmax')
                  def forward(self, x):
                      y = self._fc(x)
                      return y

881
              device = hapi.set_device('gpu')
882 883
              fluid.enable_dygraph(device)

884 885
              model = hapi.Model(MyNet())
              model.prepare()
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
              data = np.random.random(size=(4,784)).astype(np.float32)
              out = model.eval_batch([data])
              print(out)
        """
        return self._adapter.test_batch(inputs)

    def save(self, path):
        """
        This function saves parameters, optimizer infomation to path.

        The parameters contains all the trainable Variable, will save to
        a file with suffix ".pdparams".
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).

        This function will silently overwrite existing file
        at the target location.

        Args:
            path (str): The file prefix to save model. The format is
                'dirname/file_prefix' or 'file_prefix'. if empty str. A exception
                 will be raised.

        Returns:
            None

        Examples:

            .. code-block:: python
            
              import paddle.fluid as fluid
919
              import paddle.incubate.hapi as hapi
920
              
921
              class MyNet(fluid.dygraph.Layer):
922
                  def __init__(self):
923
                      super(MyNet, self).__init__()
924 925 926 927 928
                      self._fc = fluid.dygraph.Linear(784, 1, act='softmax')
                  def forward(self, x):
                      y = self._fc(x)
                      return y
              
929
              device = hapi.set_device('cpu')
930
              fluid.enable_dygraph(device)
931
              model = hapi.Model(MyNet())
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
              model.save('checkpoint/test')
        """
        if ParallelEnv().local_rank == 0:
            self._adapter.save(path)

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
            skip_mismatch (bool): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
                mismatch shape).
            reset_optimizer (bool): If True, ignore the providing file storing
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
                a optimizer has been set to the model. Default False.

        Returns:
            None

        Examples:

            .. code-block:: python
            
              import paddle.fluid as fluid
971
              import paddle.incubate.hapi as hapi
972
              
973
              class MyNet(fluid.dygraph.Layer):
974
                  def __init__(self):
975
                      super(MyNet, self).__init__()
976 977 978 979 980
                      self._fc = fluid.dygraph.Linear(784, 1, act='softmax')
                  def forward(self, x):
                      y = self._fc(x)
                      return y
              
981
              device = hapi.set_device('cpu')
982
              fluid.enable_dygraph(device)
983
              model = hapi.Model(MyNet())
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
              model.load('checkpoint/test')
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
                return pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1016
        for key, param in self.network.state_dict().items():
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
        return self._adapter.load(matched_param_state, optim_state)

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python

1045 1046 1047 1048
              import paddle.fluid as fluid
              from paddle.incubate.hapi import Model

              class MyNet(fluid.dygraph.Layer):
1049
                  def __init__(self):
1050
                      super(MyNet, self).__init__()
1051 1052 1053 1054 1055 1056
                      self._fc = fluid.dygraph.Linear(20, 10, act='softmax')
                  def forward(self, x):
                      y = self._fc(x)
                      return y

              fluid.enable_dygraph()
1057
              model = Model(MyNet())
1058 1059 1060 1061
              params = model.parameters()
        """
        return self._adapter.parameters()

1062
    def prepare(self, optimizer=None, loss_function=None, metrics=None):
1063 1064 1065 1066 1067 1068 1069
        """
        Configures the model before runing.

        Args:
            optimizer (Optimizer|None): Optimizer must be set in training
                and should be a Optimizer instance. It can be None in eval
                and test mode.
1070 1071 1072 1073
            loss_function (Loss|callable function|None): Loss function can
                be a `fluid.dygraph.Layer` instance or any callable function
                taken the predicted values and ground truth values as input.
                It can be None when there is no loss.
1074 1075 1076 1077 1078 1079 1080
            metrics (Metric|list of Metric|None): If metrics is set, all
                metrics will be calculated and output in train/eval mode.

        Returns:
            None
        """

1081 1082
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
                if fluid.in_dygraph_mode():
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
                    fluid.enable_dygraph(self._place)
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                    fluid.dygraph.parallel.prepare_context()
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
        if loss_function:
1103 1104 1105 1106
            if not isinstance(loss_function, fluid.dygraph.Layer) or \
               not callable(loss_function):
                raise TypeError("'loss_function' must be sub classes of \
                    `fluid.dygraph.Layer` or any callable function.")
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        self._loss_function = loss_function

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)

        if not in_dygraph_mode():
            self._adapter.prepare()

    def fit(
            self,
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
            callbacks=None, ):
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset|DataLoader): An iterable data loader is used for 
                train. An instance of paddle paddle.io.Dataset or 
                paddle.io.Dataloader is recomended. Default: None.
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation at the end of epoch. If None, will not do evaluation. 
                An instance of paddle.io.Dataset or paddle.io.Dataloader 
                is recomended. Default: None.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data. When train_data and eval_data are both the
                instance of Dataloader, this parameter will be ignored.
                Default: 1.
            epochs (int): Integer number. The number of epochs to train
                the model. Default: 1.
            eval_freq (int): The frequency, in number of epochs, an evalutation
                is performed. Default: 1.
            log_freq (int): The frequency, in number of steps, the training logs
                are printed. Default: 10.
            save_dir(str|None): The directory to save checkpoint during training.
                If None, will not save checkpoint. Default: None.
            save_freq (int): The frequency, in number of epochs, to save
                checkpoint. Default: 1.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            drop_last (bool): Whether drop the last incomplete batch of
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
            shuffle (bool): Whther to shuffle train_data. When train_data is
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
            num_workers (int): The number of subprocess to load data, 0 for no
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.

        Returns:
            None

        Examples:
            1. An example use Dataset and set btch size, shuffle in fit.
               How to make a batch is done internally.

            .. code-block:: python

1186
              import paddle
1187 1188
              import paddle.fluid as fluid
              import paddle.incubate.hapi as hapi
1189 1190

              dynamic = True
1191
              device = hapi.set_device('gpu')
1192 1193
              fluid.enable_dygraph(device) if dynamic else None
           
1194 1195
              train_dataset = hapi.datasets.MNIST(mode='train')
              val_dataset = hapi.datasets.MNIST(mode='test')
1196
           
1197 1198
              input = hapi.Input('image', [None, 1, 28, 28], 'float32')
              label = hapi.Input('label', [None, 1], 'int64')
1199
           
1200 1201
              model = hapi.Model(hapi.vision.LeNet(classifier_activation=None),
                  input, label)
1202 1203 1204 1205
              optim = fluid.optimizer.Adam(
                  learning_rate=0.001, parameter_list=model.parameters())
              model.prepare(
                  optim,
1206
                  paddle.nn.CrossEntropyLoss(),
1207
                  hapi.metrics.Accuracy(topk=(1, 2)))
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
              model.fit(train_dataset,
                        val_dataset,
                        epochs=2,
                        batch_size=64,
                        save_dir='mnist_checkpoint')

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python

1219
              import paddle
1220 1221
              import paddle.fluid as fluid
              import paddle.incubate.hapi as hapi
1222 1223

              dynamic = True
1224
              device = hapi.set_device('gpu')
1225 1226
              fluid.enable_dygraph(device) if dynamic else None
           
1227
              train_dataset = hapi.datasets.MNIST(mode='train')
1228 1229
              train_loader = fluid.io.DataLoader(train_dataset,
                  places=device, batch_size=64)
1230
              val_dataset = hapi.datasets.MNIST(mode='test')
1231 1232 1233
              val_loader = fluid.io.DataLoader(val_dataset,
                  places=device, batch_size=64)
           
1234 1235
              input = hapi.Input('image', [None, 1, 28, 28], 'float32')
              label = hapi.Input('label', [None, 1], 'int64')
1236
           
1237 1238
              model = hapi.Model(hapi.vision.LeNet(classifier_activation=None),
                  input, label)
1239 1240 1241 1242
              optim = fluid.optimizer.Adam(
                  learning_rate=0.001, parameter_list=model.parameters())
              model.prepare(
                  optim,
1243
                  paddle.nn.CrossEntropyLoss(),
1244
                  hapi.metrics.Accuracy(topk=(1, 2)))
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
              model.fit(train_loader,
                        val_loader,
                        epochs=2,
                        save_dir='mnist_checkpoint')
        """

        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
            train_sampler = DistributedBatchSampler(
                train_data,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last)
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader

        steps = self._len_data_loader(train_loader)
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(), )

        cbks.on_begin('train')
        for epoch in range(epochs):

            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)

        cbks.on_end('train', logs)
        self._test_dataloader = None

    def evaluate(
            self,
            eval_data,
            batch_size=1,
            log_freq=10,
            verbose=2,
            num_workers=0,
            callbacks=None, ):
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation. An instance of paddle.io.Dataset or 
                paddle.io.Dataloader is recomended.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data.  When eval_data is the instance of Dataloader,
                this argument will be ignored. Default: 1.
            log_freq (int): The frequency, in number of steps, the eval logs
                are printed. Default: 10.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            num_workers (int): The number of subprocess to load data,
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
        .. code-block:: python

1356 1357
            import paddle.fluid as fluid
            import paddle.incubate.hapi as hapi
1358

1359 1360
            # declarative mode
            val_dataset = hapi.datasets.MNIST(mode='test')
1361

1362 1363 1364 1365
            input = hapi.Input('image', [-1, 1, 28, 28], 'float32')
            label = hapi.Input('label', [None, 1], 'int64')
            model = hapi.Model(hapi.vision.LeNet(), input, label)
            model.prepare(metrics=hapi.metrics.Accuracy())
1366 1367 1368 1369 1370

            result = model.evaluate(val_dataset, batch_size=64)
            print(result)

            # imperative mode
1371 1372 1373 1374 1375
            fluid.enable_dygraph()
            model = hapi.Model(hapi.vision.LeNet())
            model.prepare(metrics=hapi.metrics.Accuracy())
            result = model.evaluate(val_dataset, batch_size=64)
            print(result)
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
                
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(), )

        eval_steps = self._len_data_loader(eval_loader)
        cbks.on_begin('eval',
                      {'steps': eval_steps,
                       'metrics': self._metrics_name()})

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
            batch_size (int): Integer number. The batch size of train_data and eval_data.
                When train_data and eval_data are both the instance of Dataloader, this
                argument will be ignored. Default: 1.
            num_workers (int): The number of subprocess to load data, 0 for no subprocess 
                used and loading data in main process. When train_data and eval_data are
                both the instance of Dataloader, this argument will be ignored. Default: 0.
            stack_output (bool): Whether stack output field like a batch, as for an output
                filed of a sample is in shape [X, Y], test_data contains N samples, predict
                output field will be in shape [N, X, Y] if stack_output is True, and will
                be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
        Returns:
            list: output of models.

        Examples:
        .. code-block:: python

            import numpy as np
1449 1450
            import paddle.fluid as fluid
            import paddle.incubate.hapi as hapi
1451

1452
            class MnistDataset(hapi.datasets.MNIST):
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
                def __init__(self, mode, return_label=True):
                    super(MnistDataset, self).__init__(mode=mode)
                    self.return_label = return_label

                def __getitem__(self, idx):
                    img = np.reshape(self.images[idx], [1, 28, 28])
                    if self.return_label:
                        return img, np.array(self.labels[idx]).astype('int64')
                    return img,

                def __len__(self):
                    return len(self.images)

            test_dataset = MnistDataset(mode='test', return_label=False)

1468 1469 1470 1471
            # declarative mode
            input = hapi.Input('image', [-1, 1, 28, 28], 'float32')
            model = hapi.Model(hapi.vision.LeNet(), input)
            model.prepare()
1472 1473

            result = model.predict(test_dataset, batch_size=64)
1474
            print(len(result[0]), result[0][0].shape)
1475 1476

            # imperative mode
1477 1478 1479 1480 1481 1482
            device = hapi.set_device('cpu')
            fluid.enable_dygraph(device)
            model = hapi.Model(hapi.vision.LeNet())
            model.prepare()
            result = model.predict(test_dataset, batch_size=64)
            print(len(result[0]), result[0][0].shape)
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        """

        if test_data is not None and isinstance(test_data, Dataset):
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size)
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

        cbks = config_callbacks(callbacks, model=self, verbose=1)

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

        cbks.on_begin('test', logs)

        outputs = []

        logs, outputs = self._run_one_epoch(test_loader, cbks, 'test')

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

        cbks.on_end('test', logs)
        return outputs

    def save_inference_model(self,
                             save_dir,
                             model_filename=None,
                             params_filename=None,
                             model_only=False):
        """
        Save inference model must in static mode.

        Args:
            save_dir (str): The directory path to save the inference model.
            model_filename (str|None): The name of file to save the inference
                model itself. If is set None, a default filename
                :code:`__model__` will be used.
            params_filename (str|None): The name of file to save all related
                parameters. If it is set None, parameters will be saved
                in separate files .
            model_only (bool): If True, It will save inference model only,
                and do not save parameters. Default: False.

        Returns:
            list: The fetch variables' name list
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555


        Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.incubate.hapi as hapi

            input = hapi.Input('image', [-1, 1, 28, 28], 'float32')
            model = hapi.Model(hapi.vision.LeNet(), input)
            model.prepare()

            model.save_inference_model('inference_model')
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
        """
        assert not fluid.in_dygraph_mode(
        ), 'Save inference model must in static mode!'

        prog = self._adapter._progs.get('test', None)
        assert prog, \
            "Model is not ready, please call `model.prepare()` first"

        infer_prog = prog.clone(for_test=True)

        input_names = [v.name for v in self._adapter._input_vars['test']]
        endpoints = self._adapter._endpoints['test']['output']

        return fluid.io.save_inference_model(
            save_dir,
            input_names,
            endpoints,
            self._adapter._executor,
            main_program=infer_prog,
            model_filename=model_filename,
            params_filename=params_filename,
            program_only=model_only)

    def _run_one_epoch(self, data_loader, callbacks, mode, logs={}):
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
            # 4. custumed iterator yield seperated inputs and labels:
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
            batch_size = data[0].shape()[0] if callable(data[
                0].shape) else data[0].shape[0]

            callbacks.on_batch_begin(mode, step, logs)

            if mode != 'test':
                outs = getattr(self, mode + '_batch')(data[:len(self._inputs)],
                                                      data[len(self._inputs):])
1604 1605 1606 1607 1608 1609
                if self._metrics and self._loss_function:
                    metrics = [[l[0] for l in outs[0]]]
                elif self._loss_function:
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
1620 1621 1622 1623 1624 1625
                if self._inputs is not None:
                    outs = getattr(self,
                                   mode + '_batch')(data[:len(self._inputs)])
                else:
                    outs = getattr(self, mode + '_batch')(data)

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
        self._reset_metrics()

        if mode == 'test':
            return logs, outputs
        return logs

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
1647
        metrics_name = ['loss'] if self._loss_function else []
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps