conv_grad_grad_kernel_impl.h 12.1 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
#include "paddle/phi/kernels/conv_kernel.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T, typename Context>
void ConvGradGradKernel(const Context& dev_ctx,
                        const DenseTensor& input,
                        const DenseTensor& filter,
31 32 33
                        const DenseTensor& out_grad,
                        paddle::optional<const DenseTensor&> input_grad_grad,
                        paddle::optional<const DenseTensor&> filter_grad_grad,
H
hong 已提交
34 35 36 37 38 39 40 41 42 43
                        const std::vector<int>& strides_t,
                        const std::vector<int>& paddings_t,
                        const std::string& padding_algorithm,
                        int groups,
                        const std::vector<int>& dilations_t,
                        const std::string& data_format,
                        bool use_addto,
                        int workspace_size_MB,
                        bool exhaustive_search,
                        DenseTensor* input_grad,
44 45
                        DenseTensor* filter_grad,
                        DenseTensor* out_grad_grad) {
H
hong 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  const DenseTensor* X = &input;
  const DenseTensor* dY = &out_grad;
  const DenseTensor* ddX = input_grad_grad.get_ptr();
  const DenseTensor* ddW_in = filter_grad_grad.get_ptr();

  DenseTensor* ddY = out_grad_grad;
  DenseTensor* dW = filter_grad;
  DenseTensor* dX = input_grad;
  DenseTensor W = filter;

  if (!ddY && !dW && !dX) return;

  const std::vector<int> strides = strides_t;
  std::vector<int> paddings = paddings_t;
  std::vector<int> dilations = dilations_t;

  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

  // transform Tensor
  DenseTensor transformed_X(X->type());
  DenseTensor transformed_dY(dY->type());
  DenseTensor transformed_ddX(X->type());

  if (channel_last) {
    ResizeToChannelFirst<Context, T>(dev_ctx, X, &transformed_X);
    TransToChannelFirst<Context, T>(dev_ctx, X, &transformed_X);

    ResizeToChannelFirst<Context, T>(dev_ctx, dY, &transformed_dY);
    TransToChannelFirst<Context, T>(dev_ctx, dY, &transformed_dY);

    if (ddX) {
      ResizeToChannelFirst<Context, T>(dev_ctx, ddX, &transformed_ddX);
      TransToChannelFirst<Context, T>(dev_ctx, ddX, &transformed_ddX);
    }
  } else {
    transformed_X = *X;
    transformed_dY = *dY;
    if (ddX) {
      transformed_ddX = *ddX;
    }
  }

  // update padding and dilation
  auto in_dims = transformed_X.dims();
  auto filter_dims = W.dims();

  DDim in_data_dims = slice_ddim(in_dims, 2, in_dims.size());
  DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  const int batch_size = static_cast<int>(transformed_X.dims()[0]);
  std::vector<int64_t> filter_shape_vec(vectorize(W.dims()));
  std::vector<int64_t> output_shape_vec(vectorize(transformed_dY.dims()));

  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  // col_shape [in_channel/group, kh, kw, oh, ow]
  col_shape_vec[0] = transformed_X.dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + data_dim + 1] = output_shape_vec[j + 2];
  }
  DDim col_shape(make_ddim(col_shape_vec));
  // col_matrix_shape [in_channel/group * kh * kw, oh * ow]
  DDim col_matrix_shape = flatten_to_2d(col_shape, data_dim + 1);
  // input_shape [Cin, H, W]
  DDim input_shape =
      slice_ddim(transformed_X.dims(), 1, transformed_X.dims().size());
  // filter_matrix_shape [Cout, Cin * kh * kw]
  DDim filter_matrix_shape = {W.dims()[0], W.numel() / W.dims()[0]};

  W.Resize(filter_matrix_shape);
  DDim output_matrix_shape = {
      transformed_dY.dims()[1],
      transformed_dY.numel() /
          (transformed_dY.dims()[0] * transformed_dY.dims()[1])};
  int in_step = static_cast<int>(transformed_X.dims()[1]) / groups;
  int out_step = static_cast<int>(transformed_dY.dims()[1]) / groups;

  bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
  DenseTensor col;
  DenseTensor col_matrix;
  if (is_expand) {
    col.Resize(col_shape);
H
hong 已提交
132
    dev_ctx.template Alloc<T>(&col);
H
hong 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  phi::funcs::SetConstant<Context, T> set_zero;
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);

  // dx convolution double grad:  gemm + col2im(col2vol)
  // dx = ddw * dy  ==> dx(N, Cin, H, W), ddw(Cout, Cin, kh, kw), dy(N, Cout,
  // oH, oW)
  if (dX && ddW_in) {
    Tensor ddW;
    ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
H
hong 已提交
146
    dev_ctx.template Alloc<T>(dX);
H
hong 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

    DenseTensor transformed_dX(dX->type());

    if (channel_last) {
      ResizeToChannelFirst<Context, T>(dev_ctx, dX, &transformed_dX);

    } else {
      transformed_dX = *dX;
    }
    // if is_expand is false, the operation of set_zero is unnecessary
    // because math::matmul will reset dx
    if (is_expand) {
      set_zero(dev_ctx, &transformed_dX, static_cast<T>(0));
    }
    paddle::operators::math::Col2VolFunctor<Context, T> col2vol;
    paddle::operators::math::
        Col2ImFunctor<paddle::operators::math::ColFormat::kCFO, Context, T>
            col2im;

    for (int i = 0; i < batch_size; i++) {
      DenseTensor dy_batch =
          transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
      DenseTensor dx_batch = transformed_dX.Slice(i, i + 1).Resize(input_shape);
      for (int g = 0; g < groups; g++) {
        // gemm
        DenseTensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
        DenseTensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
        DenseTensor dx_slice = dx_batch.Slice(g * in_step, (g + 1) * in_step);
        if (!is_expand) {
          col_matrix.ShareDataWith(dx_slice);
          col_matrix.Resize(col_matrix_shape);
        }
        blas.MatMul(
            ddw_slice, true, dy_slice, false, T(1.0), &col_matrix, T(0.0));

        if (is_expand && data_dim == 2U) {
          col2im(dev_ctx,
                 col,
                 dilations,
                 strides,
                 std::vector<int>{
                     paddings[0], paddings[2], paddings[1], paddings[3]},
                 &dx_slice);
        } else if (is_expand && data_dim == 3U) {
          col2vol(dev_ctx, col, dilations, strides, paddings, &dx_slice);
        }
      }
    }
    if (channel_last) {
      TransToChannelLast<Context, T>(dev_ctx, &transformed_dX, dX);
    }
  }

  // dw = ddx * dy  ==> dw(Cout, Cin, kh, kw), ddx(N, Cin, H, W), dy(N, Cout,
  // oH, oW)
  // dw convolution double grad:  im2col(vol2col) + gemm
  if (dW && ddX) {
H
hong 已提交
204
    dev_ctx.template Alloc<T>(dW);
H
hong 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    set_zero(dev_ctx, dW, static_cast<T>(0));
    DenseTensor dW_arr = *dW;
    dW_arr.Resize(filter_matrix_shape);
    paddle::operators::math::
        Im2ColFunctor<paddle::operators::math::ColFormat::kCFO, Context, T>
            im2col;
    paddle::operators::math::Vol2ColFunctor<Context, T> vol2col;
    for (int i = 0; i < batch_size; ++i) {
      DenseTensor dy_batch =
          transformed_dY.Slice(i, i + 1).Resize(output_matrix_shape);
      Tensor ddx_batch = transformed_ddX.Slice(i, i + 1).Resize(input_shape);
      for (int g = 0; g < groups; ++g) {
        // im2col
        DenseTensor dy_slice = dy_batch.Slice(g * out_step, (g + 1) * out_step);
        DenseTensor ddx_slice = ddx_batch.Slice(g * in_step, (g + 1) * in_step);
        if (!is_expand) {
          col.ShareDataWith(ddx_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
        } else if (data_dim == 2U) {
          im2col(dev_ctx,
                 ddx_slice,
                 dilations,
                 strides,
                 std::vector<int>{
                     paddings[0], paddings[2], paddings[1], paddings[3]},
                 &col);
        } else if (data_dim == 3U) {
          vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
        }

        DenseTensor dw_slice = dW_arr.Slice(g * out_step, (g + 1) * out_step);
        blas.MatMul(
            dy_slice, false, col_matrix, true, T(1.0), &dw_slice, T(1.0));
      }
    }
  }

  // ddy = w * ddx + x * ddw ==> ddy(N, Cout, oH, oW), x/ddx(N, Cin, H, W),
  // w/ddw(Cout, Cin, kh, kw)
  // ddy convolution double grad: im2col(vol2col) + gemm
  if (ddY) {
H
hong 已提交
247
    dev_ctx.template Alloc<T>(ddY);
H
hong 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

    DenseTensor transformed_ddY(ddY->type());
    if (channel_last) {
      ResizeToChannelFirst<Context, T>(dev_ctx, ddY, &transformed_ddY);
    } else {
      transformed_ddY = *ddY;
    }

    set_zero(dev_ctx, &transformed_ddY, static_cast<T>(0));
    paddle::operators::math::
        Im2ColFunctor<paddle::operators::math::ColFormat::kCFO, Context, T>
            im2col;
    paddle::operators::math::Vol2ColFunctor<Context, T> vol2col;
    for (int i = 0; i < batch_size; ++i) {
      DenseTensor ddy_batch =
          transformed_ddY.Slice(i, i + 1).Resize(output_matrix_shape);
      for (int g = 0; g < groups; ++g) {
        // gemm
        DenseTensor ddy_slice =
            ddy_batch.Slice(g * out_step, (g + 1) * out_step);

        if (ddX) {
          DenseTensor ddx_batch =
              transformed_ddX.Slice(i, i + 1).Resize(input_shape);
          DenseTensor ddx_slice =
              ddx_batch.Slice(g * in_step, (g + 1) * in_step);
          if (!is_expand) {
            col.ShareDataWith(ddx_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
          } else if (data_dim == 2U) {
            im2col(dev_ctx,
                   ddx_slice,
                   dilations,
                   strides,
                   std::vector<int>{
                       paddings[0], paddings[2], paddings[1], paddings[3]},
                   &col);
          } else if (data_dim == 3U) {
            vol2col(dev_ctx, ddx_slice, dilations, strides, paddings, &col);
          }
          DenseTensor w_slice = W.Slice(g * out_step, (g + 1) * out_step);
          blas.MatMul(
              w_slice, false, col_matrix, false, T(1.0), &ddy_slice, T(0.0));
        }

        if (ddW_in) {
          DenseTensor x_batch =
              transformed_X.Slice(i, i + 1).Resize(input_shape);
          DenseTensor x_slice = x_batch.Slice(g * in_step, (g + 1) * in_step);

          DenseTensor ddW;
          ddW.ShareDataWith(*ddW_in).Resize(filter_matrix_shape);
          if (!is_expand) {
            col.ShareDataWith(x_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
          } else if (data_dim == 2U) {
            im2col(dev_ctx,
                   x_slice,
                   dilations,
                   strides,
                   std::vector<int>{
                       paddings[0], paddings[2], paddings[1], paddings[3]},
                   &col);
          } else if (data_dim == 3U) {
            vol2col(dev_ctx, x_slice, dilations, strides, paddings, &col);
          }

          // gemm
          DenseTensor ddw_slice = ddW.Slice(g * out_step, (g + 1) * out_step);
          blas.MatMul(
              ddw_slice, false, col_matrix, false, T(1.0), &ddy_slice, T(1.0));
        }
      }
    }
    if (channel_last) {
      TransToChannelLast<Context, T>(dev_ctx, &transformed_ddY, ddY);
    }
  }
}

}  // namespace phi