pooling.py 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.dygraph import layers
from ...fluid.layer_helper import LayerHelper
from .. import functional as F

__all__ = [
C
cnn 已提交
20 21 22 23 24 25 26 27 28 29 30 31
    'AvgPool1D',
    'AvgPool2D',
    'AvgPool3D',
    'MaxPool1D',
    'MaxPool2D',
    'MaxPool3D',
    'AdaptiveAvgPool1D',
    'AdaptiveAvgPool2D',
    'AdaptiveAvgPool3D',
    'AdaptiveMaxPool1D',
    'AdaptiveMaxPool2D',
    'AdaptiveMaxPool3D',
32 33 34
]


C
cnn 已提交
35
class AvgPool1D(layers.Layer):
36 37
    """
    This operation applies a 1D average pooling over an input signal composed
38
    of several input planes, based on the input, output_size, return_mask parameters.
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:

    ..  math::

       Output(N_i, C_i, l) &= mean(Input[N_i, C_i, stride \times l:stride \times l+k])


    Args:
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
54
            it must contain an integer.
55
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
56 57 58 59 60 61 62 63
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
64
        exclusive (bool): Whether to exclude padding points in average pooling
65
                          mode, default is `True`.
66
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
67
            If it is set to False, the floor function will be used. The default value is False.
68 69 70 71 72 73 74 75 76 77 78
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        None.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
79
        ShapeError: If the input is not a 3-D tensor.
80 81 82
        ShapeError: If the output's shape calculated is not greater than 0.


83 84 85 86
    Shape:
        - inpuut: 3-D tensor.
        - output: 3-D tensor

87 88 89
    Examples:

        .. code-block:: python
90

91 92
          import paddle
          import paddle.nn as nn
C
Chen Long 已提交
93
          import numpy as np
94 95

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
96 97
          AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
          pool_out = AvgPool1D(data)
98 99 100 101 102 103 104 105
          # pool_out shape: [1, 3, 16]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
106
                 exclusive=True,
107 108
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
109
        super(AvgPool1D, self).__init__()
110 111 112 113
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
114
        self.exclusive = exclusive
115 116 117 118
        self.name = name

    def forward(self, x):
        out = F.avg_pool1d(x, self.kernel_size, self.stride, self.padding,
119
                           self.exclusive, self.ceil_mode, self.name)
120 121 122
        return out


C
cnn 已提交
123
class AvgPool2D(layers.Layer):
124
    r"""
125 126 127 128
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
129

130 131 132 133 134
    Example:
      Input:
           X shape: $(N, C, H_{in}, W_{in})$
      Attr:
           kernel_size: ksize
135

136 137 138 139 140 141
      Output:
           Out shape: $(N, C, H_{out}, W_{out})$
           $$
           out(N_i, C_j, h, w)  = \frac{1}{ksize[0] * ksize[1]} \sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                               input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
           $$
142 143

    Args:
144 145 146
       kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
147
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
148 149 150 151 152 153 154 155 156 157 158
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
159
        exclusive (bool): Whether to exclude padding points in average pooling
160 161 162 163 164
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
165 166 167 168
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

169 170 171
    Shape:
        - x: 4-D tensor.
        - out: 2-D tensor
172

173
    Returns: None.
174 175 176 177 178 179
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
    Examples:
        .. code-block:: python
180

181 182
          import paddle
          import paddle.nn as nn
183
          import numpy as np
184

185 186
          # max pool2d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
187
          AvgPool2D = nn.AvgPool2D(kernel_size=2,
188
                                stride=2, padding=0)
C
Chen Long 已提交
189
          output = AvgPool2D(input)
190
          # output.shape [1, 3, 16, 16]
191 192 193 194 195 196 197 198

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 ceil_mode=False,
199
                 exclusive=True,
200 201
                 divisor_override=None,
                 data_format="NCHW",
202
                 name=None):
C
cnn 已提交
203
        super(AvgPool2D, self).__init__()
204
        self.ksize = kernel_size
205 206 207
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
208
        self.exclusive = exclusive
209 210
        self.divisor = divisor_override
        self.data_format = data_format
211 212
        self.name = name

213 214 215 216 217 218 219
    def forward(self, x):
        return F.avg_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
220
            exclusive=self.exclusive,
221 222 223
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name)
224 225


C
cnn 已提交
226
class AvgPool3D(layers.Layer):
227
    """
228 229 230 231
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
232 233

    Args:
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
249
        exclusive (bool): Whether to exclude padding points in average pooling
250 251 252 253 254
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
255 256 257 258
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

259
    Returns: None.
260
    Raises:
261 262 263 264 265 266 267
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Shape:
        - x: 5-D tensor.
        - out: 5-D tensor.
268 269 270

    Examples:
        .. code-block:: python
271

272 273
          import paddle
          import paddle.nn as nn
274
          import numpy as np
275

276 277
          # avg pool3d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
278
          AvgPool3D = nn.AvgPool3D(kernel_size=2,
279
                                   stride=2, padding=0)
C
cnn 已提交
280
          output = AvgPool3D(input)
281 282
          # output.shape [1, 2, 3, 16, 16]

283 284
    """

285 286 287 288 289
    def __init__(self,
                 kernel_size,
                 stride,
                 padding=0,
                 ceil_mode=False,
290
                 exclusive=True,
291 292 293
                 divisor_override=None,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
294
        super(AvgPool3D, self).__init__()
295 296 297 298
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
299
        self.exclusive = exclusive
300 301
        self.divisor = divisor_override
        self.data_format = data_format
302 303
        self.name = name

304 305 306 307 308 309 310
    def forward(self, x):
        return F.avg_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
311
            exclusive=self.exclusive,
312 313 314
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name)
315 316


C
cnn 已提交
317
class MaxPool1D(layers.Layer):
318
    """
319
    Applies a 1D max pooling over an input signal composed of several input planes based
320
    on the input, output_size, return_mask parameters.
321 322 323
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.

324 325 326
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
327 328 329

    ..  math::

330
       Output(N_i, C_i, l) &=  max(Input[N_i, C_i, stride \times l:stride \times l+k])}
331 332

    Args:
333 334 335 336 337 338 339 340 341 342 343
       kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
344
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
345 346
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
347 348 349 350 351 352 353
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        None.

    Raises:
354 355 356 357 358 359 360 361 362 363
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
        ShapeError: If the input is not a 3-D.
        ShapeError: If the output's shape calculated is not greater than 0.


    Shape:
        - x: 3-D tensor.
        - out: 3-D tensor.
364 365

    Examples:
366

367 368
        .. code-block:: python

369
          import paddle
370
          import paddle.nn as nn
C
Chen Long 已提交
371
          import numpy as np
372 373

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
374 375
          MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
          pool_out = MaxPool1D(data)
376 377
          # pool_out shape: [1, 3, 16]

378
          MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
C
cnn 已提交
379
          pool_out, indices = MaxPool1D(data)
380 381 382 383
          # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]

    """

384 385 386 387
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
388
                 return_mask=False,
389 390
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
391
        super(MaxPool1D, self).__init__()
392 393 394 395
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
396
        self.return_mask = return_mask
397 398 399
        self.name = name

    def forward(self, input):
400
        out = F.max_pool1d(input, self.kernel_size, self.stride, self.padding,
401
                           self.return_mask, self.ceil_mode, self.name)
402
        return out
403 404


C
cnn 已提交
405
class MaxPool2D(layers.Layer):
406
    r"""
407
    This operation applies 2D max pooling over input feature based on the input,
408 409 410 411 412 413 414 415 416 417 418 419 420
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
      Input:
           X shape: $(N, C, H_{in}, W_{in})$
      Attr:
           kernel_size: ksize

      Output:
           Out shape: $(N, C, H_{out}, W_{out})$
           $$
421 422 423
           out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1} \\
                                    & \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
                                                   \text{stride[1]} \times w + n)
424 425 426 427 428 429 430 431
           $$

    Args:
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
432 433 434 435 436 437 438 439
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
440
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
441
        return_mask (bool): Whether to return the max indices along with the outputs.
442 443 444
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
445 446 447
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
448

449
    Returns: None
450 451 452 453
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
454 455 456 457 458

    Shape:
        - x: 4-D tensor.
        - out: 4-D tensor.

459 460
    Examples:
        .. code-block:: python
461

462 463 464 465 466 467
          import paddle
          import paddle.nn as nn
          import numpy as np

          # max pool2d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
468
          MaxPool2D = nn.MaxPool2D(kernel_size=2,
469
                                   stride=2, padding=0)
C
cnn 已提交
470
          output = MaxPool2D(input)
471 472
          # output.shape [1, 3, 16, 16]

473 474
          # for return_mask=True
          MaxPool2D = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, return_mask=True)
C
cnn 已提交
475
          output, max_indices = MaxPool2D(input)
476
          # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
477 478 479 480 481 482
    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
483
                 return_mask=False,
484 485 486
                 ceil_mode=False,
                 data_format="NCHW",
                 name=None):
C
cnn 已提交
487
        super(MaxPool2D, self).__init__()
488 489 490
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
491
        self.return_mask = return_mask
492 493 494 495 496
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
497
        return F.max_pool2d(
498 499 500 501
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
502
            return_mask=self.return_mask,
D
Double_V 已提交
503
            ceil_mode=self.ceil_mode,
504 505 506 507
            data_format=self.data_format,
            name=self.name)


C
cnn 已提交
508
class MaxPool3D(layers.Layer):
509
    """
510
    This operation applies 3D max pooling over input features based on the input,
511
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
512 513
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
514 515

    Args:
516
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
517
            is a tuple or list, it must contain three integers,
518
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
519
            Otherwise, the pool kernel size will be the cube of an int.
520 521 522 523 524 525 526 527 528 529 530
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
531
        return_mask (bool): Whether to return the max indices along with the outputs.
532 533 534
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
535 536 537 538 539 540 541 542 543 544
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:None.
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
545 546 547 548 549

    Shape:
        - x: 5-D tensor.
        - out: 5-D tensor.

550 551
    Examples:
        .. code-block:: python
552

553 554 555 556 557 558
          import paddle
          import paddle.nn as nn
          import numpy as np

          # max pool3d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
559
          MaxPool3D = nn.MaxPool3D(kernel_size=2,
560
                                   stride=2, padding=0)
C
cnn 已提交
561
          output = MaxPool3D(input)
562 563
          # output.shape [1, 2, 3, 16, 16]

564 565
          # for return_mask=True
          MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0, return_mask=True)
C
cnn 已提交
566
          output, max_indices = MaxPool3D(input)
567 568 569 570 571 572 573
          # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
    """

    def __init__(self,
                 kernel_size,
                 stride,
                 padding,
574
                 return_mask=False,
575 576 577
                 ceil_mode=False,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
578
        super(MaxPool3D, self).__init__()
579 580 581
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
582
        self.return_mask = return_mask
583 584 585 586 587 588 589 590 591 592
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        return F.max_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
593
            return_mask=self.return_mask,
D
Double_V 已提交
594
            ceil_mode=self.ceil_mode,
595 596 597 598
            data_format=self.data_format,
            name=self.name)


C
cnn 已提交
599
class AdaptiveAvgPool1D(layers.Layer):
600
    r"""
601 602

    This operation applies a 1D adaptive average pooling over an input signal composed
603
    of several input planes, based on the input, output_size, return_mask parameters.
604 605 606 607 608 609 610 611 612 613 614 615 616
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For average adaptive pool1d:

    ..  math::

       lstart &= floor(i * L_{in} / L_{out})

       lend &= ceil((i + 1) * L_{in} / L_{out})

       Output(i) &= \\frac{sum(Input[lstart:lend])}{(lstart - lend)}
617 618

    Args:
619
        output_size (int): The target output size. It must be an integer.
620 621 622 623
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

624 625 626
    Returns:
        None.

627
    Raises:
628
        ValueError: 'output_size' should be an integer.
629 630 631 632 633

    Shape:
        - x: 3-D tensor.
        - out: 3-D tensor.

634 635
    Examples:
        .. code-block:: python
636 637 638 639 640 641 642 643 644 645 646 647 648

          # average adaptive pool1d
          # suppose input data in shape of [N, C, L], `output_size` is m or [m],
          # output shape is [N, C, m], adaptive pool divide L dimension
          # of input data into m grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         lstart = floor(i * L / m)
          #         lend = ceil((i + 1) * L / m)
          #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
          #
649 650
          import paddle
          import paddle.nn as nn
C
Chen Long 已提交
651
          import numpy as np
652

653
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
654 655
          AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
          pool_out = AdaptiveAvgPool1D(data)
656
          # pool_out shape: [1, 3, 16]
657 658
    """

659
    def __init__(self, output_size, name=None):
C
cnn 已提交
660
        super(AdaptiveAvgPool1D, self).__init__()
661
        self.output_size = output_size
662 663
        self.name = name

664 665 666 667
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)


C
cnn 已提交
668
class AdaptiveAvgPool2D(layers.Layer):
669
    r"""
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}


    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Shape:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type is same as input x.

    Returns:
C
cnn 已提交
705
        A callable object of AdaptiveAvgPool2D.
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
727

728 729 730
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
C
cnn 已提交
731
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2D(output_size=3)
732 733 734 735 736
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
C
cnn 已提交
737
        super(AdaptiveAvgPool2D, self).__init__()
738 739 740 741 742 743 744 745 746 747 748 749
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.adaptive_avg_pool2d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name)


C
cnn 已提交
750
class AdaptiveAvgPool3D(layers.Layer):
751
    r"""
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}


    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type is same as input x.

    Returns:
C
cnn 已提交
790
        A callable object of AdaptiveAvgPool3D.
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
815

816 817 818
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
C
cnn 已提交
819
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
820 821 822 823 824
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
C
cnn 已提交
825
        super(AdaptiveAvgPool3D, self).__init__()
826 827 828 829 830 831 832 833 834 835 836 837
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.adaptive_avg_pool3d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name)


C
cnn 已提交
838
class AdaptiveMaxPool1D(layers.Layer):
839 840 841
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
842
    of several input planes, based on the input, output_size, return_mask parameters.
843 844 845 846 847 848 849 850 851 852 853 854
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

       lstart &= floor(i * L_{in} / L_{out})

       lend &= ceil((i + 1) * L_{in} / L_{out})

D
Double_V 已提交
855
       Output(i) &= max(Input[lstart:lend])
856 857 858 859

    Args:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
             it must contain one int.
860
        return_mask (bool): If true, the index of max pooling point will be returned along
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        None.

    Raises:
        ValueError: 'pool_size' should be a integer or list or tuple with length as 1.

    Shape:
        x (Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type is same as input x.

    Examples:
        .. code-block:: python

          # max adaptive pool1d
          # suppose input data in shape of [N, C, L], `output_size` is m or [m],
          # output shape is [N, C, m], adaptive pool divide L dimension
          # of input data into m grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         lstart = floor(i * L / m)
          #         lend = ceil((i + 1) * L / m)
          #         output[:, :, i] = max(input[:, :, lstart: lend])
          #
C
Chen Long 已提交
890
          import paddle
891
          import paddle.nn as nn
C
Chen Long 已提交
892
          import numpy as np
893 894

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
895 896
          AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
          pool_out = AdaptiveMaxPool1D(data)
897 898
          # pool_out shape: [1, 3, 16]

899 900
          # for return_mask = true
          AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
C
cnn 已提交
901
          pool_out, indices = AdaptiveMaxPool1D(data)
902 903 904 905
          # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]

    """

906
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
907
        super(AdaptiveMaxPool1D, self).__init__()
908
        self.output_size = output_size
909
        self.return_mask = return_mask
910 911 912
        self.name = name

    def forward(self, input):
913 914
        return F.adaptive_max_pool1d(input, self.output_size, self.return_mask,
                                     self.name)
915 916


C
cnn 已提交
917
class AdaptiveMaxPool2D(layers.Layer):
918 919 920
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
921

922
    For adaptive max pool2d:
923

924
    ..  math::
925

926
       hstart &= floor(i * H_{in} / H_{out})
927

928
       hend &= ceil((i + 1) * H_{in} / H_{out})
929

930
       wstart &= floor(j * W_{in} / W_{out})
931

932
       wend &= ceil((j + 1) * W_{in} / W_{out})
933

934
       Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
935

936 937
    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
938
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. It cannot be set in average pooling type. Default False.
939 940 941 942 943 944
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type is same as input x.
D
Double_V 已提交
945

946
    Returns:
C
cnn 已提交
947
        A callable object of AdaptiveMaxPool2D.
948 949
    Examples:
        .. code-block:: python
950

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
968

969 970
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
971
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
972 973 974
            pool_out, indices = adaptive_max_pool(x = x)
    """

975
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
976
        super(AdaptiveMaxPool2D, self).__init__()
977
        self._output_size = output_size
978
        self._return_mask = return_mask
979 980 981 982 983 984
        self._name = name

    def forward(self, x):
        return F.adaptive_max_pool2d(
            x,
            output_size=self._output_size,
985
            return_mask=self._return_mask,
986 987 988
            name=self._name)


C
cnn 已提交
989
class AdaptiveMaxPool3D(layers.Layer):
990
    """
991
    This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions
992
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
993

994
    For adaptive max pool3d:
995

996
    ..  math::
997

998
      dstart &= floor(i * D_{in} / D_{out})
999

1000
      dend &= ceil((i + 1) * D_{in} / D_{out})
1001

1002
      hstart &= floor(j * H_{in} / H_{out})
1003

1004
      hend &= ceil((j + 1) * H_{in} / H_{out})
1005

1006
      wstart &= floor(k * W_{in} / W_{out})
1007

1008
      wend &= ceil((k + 1) * W_{in} / W_{out})
1009

1010
      Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
1011

1012
    Parameters:
1013
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1014
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1015 1016 1017 1018 1019 1020 1021
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type is same as input x.
    Returns:
C
cnn 已提交
1022
        A callable object of AdaptiveMaxPool3D.
1023 1024
    Examples:
        .. code-block:: python
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
1046

1047 1048
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
C
cnn 已提交
1049
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
1050 1051
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
1052
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
1053
            out, indices = pool(x)
1054
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
D
Double_V 已提交
1055

1056 1057
    """

1058
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1059
        super(AdaptiveMaxPool3D, self).__init__()
1060
        self._output_size = output_size
1061
        self._return_mask = return_mask
1062 1063 1064 1065 1066 1067
        self._name = name

    def forward(self, x):
        return F.adaptive_max_pool3d(
            x,
            output_size=self._output_size,
1068
            return_mask=self._return_mask,
1069
            name=self._name)