graph_pattern_detector.h 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest_prod.h>
#endif

#include <numeric>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
24
#include "paddle/fluid/inference/analysis/dot.h"
25 26 27 28

namespace paddle {
namespace framework {
namespace ir {
29
class PDPattern;
30

31
// Some basic terminologies:
32 33 34 35 36 37 38 39 40
//   - PDPattern: a pattern defined as a data flow graph.
//   - PDNode: the node in the pattern, each PDNode represents an `ir::Node`
//     that meets some conditions defined in `PDNode.teller`.
//   - A pattern is defined with PDNodes with edges.

// Pattern detector node. This node helps to build a pattern.
struct PDNode {
  // tell whether an ir::Node* is a candidation for a PDNode.
  using teller_t = std::function<bool(Node*)>;
41
  enum class Type { kOp, kVar };
Y
Yan Chunwei 已提交
42 43 44 45 46 47
  enum class Role {
    kUnknown,      // No role,
    kInput,        // an input and will be retained,
    kOutput,       // an output and will be retained,
    kIntermediate  // will be removed after handler.
  };
48

49 50 51
  // this link to others
  PDNode& LinksTo(const std::vector<PDNode*>& others);
  PDNode& LinksFrom(const std::vector<PDNode*>& others);
52 53

  bool Tell(Node* node) const {
Y
Yan Chunwei 已提交
54 55 56 57 58 59
    if (teller_) return teller_(node);

    for (auto& asrt : asserts_) {
      if (!asrt(node)) return false;
    }
    return true;
60 61
  }

62 63 64
  bool IsOp() const { return type_ == Type::kOp; }
  bool IsVar() const { return type_ == Type::kVar; }

65 66 67
  const std::string& name() const { return name_; }

  PDNode& operator=(const PDNode&) = delete;
Y
Yan Chunwei 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  PDNode(const PDNode&) = delete;

  // Mark this node is an Input of a subgraph and will be retained.
  PDNode* AsInput() {
    role_ = Role::kInput;
    return this;
  }
  // Mark this node is an Output of a subgraph and will be retained.
  PDNode* AsOutput() {
    role_ = Role::kOutput;
    return this;
  }
  // Mark this node will be removed, so all the links should be inside a matched
  // sub-graph.
  PDNode* AsIntermediate() {
    role_ = Role::kIntermediate;
    return this;
  }

  bool IsIntermediate() const { return role_ == Role::kIntermediate; }
  bool IsInput() const { return role_ == Role::kInput; }
  bool IsOutput() const { return role_ == Role::kOutput; }

  // Assertions, helper functions to simplify the pattern definition.
  PDNode* assert_is_op();
  PDNode* assert_is_op(const std::string& op_type);
  PDNode* assert_is_var();
  PDNode* assert_var_not_persistable();
  PDNode* assert_is_persistable_var();
  PDNode* assert_is_op_output(const std::string& op_type);
  PDNode* assert_is_op_input(const std::string& op_type);
  PDNode* assert_is_op_nth_input(const std::string& op_type,
                                 const std::string& argument, int nth);
  PDNode* assert_is_op_nth_output(const std::string& op_type,
                                  const std::string& argument, int nth);
  PDNode* assert_is_only_input_of_op(const std::string& op_type);
  PDNode* assert_is_only_output_of_op(const std::string& op_type);
  PDNode* assert_op_has_n_inputs(const std::string& op_type, size_t n);
  PDNode* assert_op_has_n_outputs(const std::string& op_type, size_t n);
  PDNode* assert_more(teller_t&& teller);
108 109

 private:
Y
Yan Chunwei 已提交
110 111 112
  PDNode(PDPattern* pattern, const std::string& name = "",
         Type type = Type::kVar)
      : pattern_(pattern), name_(name), type_(type) {}
113 114 115 116 117 118 119 120 121 122 123 124 125
  PDNode(teller_t&& teller, PDPattern* pattern, const std::string& name = "",
         Type type = Type::kVar)
      : teller_(std::move(teller)),
        pattern_(pattern),
        name_(name),
        type_(type) {
    PADDLE_ENFORCE(teller_ != nullptr, "invalid teller functer is set.");
  }

  PDNode(PDNode&& other) = default;

  friend class PDPattern;

Y
Yan Chunwei 已提交
126
  // Will removed latter.
127
  teller_t teller_;
Y
Yan Chunwei 已提交
128
  std::vector<teller_t> asserts_;
129
  PDPattern* pattern_;
130
  std::string name_;
131
  Type type_;
Y
Yan Chunwei 已提交
132
  Role role_{Role::kUnknown};
133 134 135 136 137 138 139 140 141 142 143 144
};

/*
 * A pattern in a graph, which defined with PDNode and edges. Most graph
 * patterns can be divided into PDNodes and link relations between them.
 *
 * For example, the FC fusion need to filter the MUL and ELEMENTWISE_ADD
 * operators from the computation graph, the MUL's output should have only one
 * consumer which is the ELEMENTWISE_ADD.
 * This pattern can be defined as with the following pseudo codes
 *
 *     // Create two operator PDNodes.
Y
Yan Chunwei 已提交
145 146
 *     MUL = PDPattern.NewNode().assert_is_op("mul");
 *     ELE = PDPattern.NewNode().assert_is_op("elementwise_add");
147
 *     // Create the variable PDNodes.
Y
Yan Chunwei 已提交
148 149 150 151 152 153
 *     MUL_out = PDPattern.NewNode().assert_is_op_output("mul") \
 *                                  .assert_is_op_input("elementwise_add") \
 *                                  .AsIntermediate();
 *     // Add relations.
 *     MUL->LinksTo({MUL_out});
 *     MUL_out->LinksTo({ELE});
154
 *
Y
Yan Chunwei 已提交
155 156
 * One can add more specific asserts for PDNodes or edges, both the Operator
 * and Variable Nodes can be ruled in PDNode.assert_more(...).
157 158 159 160 161 162 163 164 165 166 167
 *
 * PDPattern can record the general patterns, such as the pattern represents
 *   - Op in CPU -> Op in GPU -> Op in CPU, to findout the IO abnormal place.
 *   - Ops whose inputs and outputs share the same variables
 */
class PDPattern {
 public:
  using edge_t = std::pair<PDNode*, PDNode*>;

  void AddEdge(PDNode* a, PDNode* b);

168
  PDNode* NewNode(PDNode::teller_t&& teller, const std::string& name = NewID());
Y
Yan Chunwei 已提交
169 170
  PDNode* NewNode(const std::string& name = NewID());
  PDNode* RetrieveNode(const std::string& id) const;
171 172 173 174

  const std::vector<std::unique_ptr<PDNode>>& nodes() const { return nodes_; }
  const std::vector<edge_t>& edges() const { return edges_; }

175 176
  std::string DotString() const;

177 178 179 180 181 182
 private:
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(PDPattern, AddEdge);
  FRIEND_TEST(PDPattern, NewNode);
#endif

183 184
  static std::string NewID() { return "pdnode-" + std::to_string(id_++); }

185 186
  std::vector<std::unique_ptr<PDNode>> nodes_;
  std::vector<edge_t> edges_;
187 188
  std::unordered_map<std::string, PDNode*> node_map_;
  static size_t id_;
189 190 191
};

/*
192
 * GraphPatternDetector helps to detect the specific patterns in the graph.
193 194 195 196 197 198 199 200 201 202 203
 * Input a pattern, output a list of the matched subgraphs/nodes.
 * This helper can be used to support fuse(conv+batchnorm => batchnorm e.g.).
 *
 * The algorithm has three phases:
 *   1. Mark the nodes that match the defined PDNodes in a PDPattern,
 *   2. Extend a PDNode to subgraphs by deducing the connection relation defined
 *      in PAPattern(the edges),
 *   3. Get the filtered subgraphs and treat them with a pre-defined handler.
 *
 * Usage:
 *    // Create a detector
204
 *    GraphPatternDetector detector;
205 206 207 208 209 210 211 212
 *    // Define the detector's pattern, by adding PDNode and define the edges.
 *    auto* node0 = detector.mutable_pattern().AddNode(...)
 *    auto* node1 = detector.mutable_pattern().AddNode(...)
 *    node0->teller = some lambda.
 *    node1->teller = some lambda.
 *    detector.mutable_pattern().AddEdge(node0, node1);
 *    // Create an handler, to define the behavior of treating the filtered
 *    // subgraphs that comply with the patterns.
213
 *    GraphPatternDetector::handle_t handler = some labmda
214 215 216
 *    // Execute the detector.
 *    detector(&graph, handler);
 */
217
class GraphPatternDetector {
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
 public:
  using subgraph_t = std::unordered_map<PDNode*, Node*>;

  // Operate on the detected pattern.
  using handle_t =
      std::function<void(const subgraph_t& /*hitted pattern*/, Graph*)>;

  void operator()(Graph* graph, handle_t handler);

  const PDPattern& pattern() const { return pattern_; }
  PDPattern* mutable_pattern() { return &pattern_; }

 private:
  // Mark the nodes that fits the pattern.
  bool MarkPDNodesInGraph(const ir::Graph& graph);

  // Detect all the pattern and output the hit records.
  std::vector<subgraph_t> DetectPatterns();

  // Remove duplicate patterns.
  void UniquePatterns(std::vector<subgraph_t>* subgraphs);

  // Remove overlapped match subgraphs, when overlapped, keep the previous one.
  void RemoveOverlappedMatch(std::vector<subgraph_t>* subgraphs);

Y
Yan Chunwei 已提交
243 244 245
  // Validate whether the intermediate nodes are linked by external nodes.
  void ValidateByNodeRole(std::vector<subgraph_t>* subgraphs);

246 247 248 249 250 251 252 253 254 255 256 257
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(GraphPatternDetecter, MarkPDNodesInGraph);
  FRIEND_TEST(GraphPatternDetecter, DetectPatterns);
#endif

 private:
  using hit_rcd_t =
      std::pair<Node* /*node in graph*/, PDNode* /*node in pattern*/>;
  PDPattern pattern_;
  std::unordered_map<const PDNode*, std::unordered_set<Node*>> pdnodes2nodes_;
};

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
// some helper methods.

// Op's input.
static bool VarLinksToOp(Node* node, const std::string& op_type) {
  for (auto* out : node->outputs) {
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

// Op's output.
static bool VarLinksFromOp(Node* node, const std::string& op_type) {
  for (auto* out : node->inputs) {
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

// Check whether a var node is a op node's nth input.
static bool IsNthInput(Node* var, Node* op, const std::string& argument,
                       size_t nth) {
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->inputs.size() <= nth) return false;
  return var->Name() == op->Op()->Input(argument)[nth];
}

Y
Yan Chunwei 已提交
289 290 291 292 293 294 295 296
static bool IsNthOutput(Node* var, Node* op, const std::string& argument,
                        size_t nth) {
  PADDLE_ENFORCE(var->IsVar());
  PADDLE_ENFORCE(op->IsOp());
  if (op->inputs.size() <= nth) return false;
  return var->Name() == op->Op()->Output(argument)[nth];
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void GraphSafeRemoveNodes(Graph* graph,
                                 const std::unordered_set<const Node*>& nodes) {
  for (auto* node : nodes) {
    graph->RemoveNode(const_cast<Node*>(node));
  }

  for (auto* node : graph->Nodes()) {
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
        it = const_cast<Node*>(node)->inputs.erase(it);
      } else
        it++;
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
        it = const_cast<Node*>(node)->outputs.erase(it);
      } else
        it++;
    }
  }
}

319 320 321
}  // namespace ir
}  // namespace framework
}  // namespace paddle