tensor.cc 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Copyright (c) 2021 CINN Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/cinn/ir/tensor.h"

#include <cstring>

#include "paddle/cinn/cinn.h"
#include "paddle/cinn/common/arithmatic.h"
#include "paddle/cinn/common/axis.h"
#include "paddle/cinn/common/cas.h"
#include "paddle/cinn/common/common.h"
#include "paddle/cinn/common/ir_util.h"
#include "paddle/cinn/ir/buffer.h"
#include "paddle/cinn/ir/ir_operators.h"
#include "paddle/cinn/ir/ir_printer.h"
#include "paddle/cinn/ir/ir_visitor.h"
#include "paddle/cinn/ir/operation.h"
#include "paddle/cinn/lang/compute.h"
#include "paddle/cinn/poly/isl_utils.h"
#include "paddle/cinn/poly/stage.h"

namespace cinn {
namespace ir {

Tensor _Tensor_::Make(const std::string &name,
                      Type dtype,
                      const std::vector<Expr> &shape,
                      const std::vector<Expr> &domain,
                      FunctionRef fn,
                      const std::vector<Var> &reduce_axis) {
  CHECK(!name.empty()) << "Tensor name is set empty";
44 45 46 47
  auto n = make_shared<_Tensor_>();
  n->name = name;
  n->shape = shape;
  n->domain = domain;
48 49 50 51 52 53 54 55 56 57 58 59 60 61
  n->reduce_axis = reduce_axis;
  n->set_type(dtype);
  n->operation = fn;
  n->InitAxis();

  return Tensor(n);
}

size_t Tensor::ndims() const { return operator->()->shape.size(); }

std::set<std::string> _Tensor_::GetDependTensorNames() const {
  std::set<std::string> names;

  auto add_depend_tensors_from_expr = [&](Expr expr) {
62 63 64
    auto tensors = CollectIRNodes(expr, [&](const Expr *x) {
      return x->as_tensor() && x->as_tensor()->name != this->name;
    });
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    for (auto &e : tensors) {
      names.insert(e.as_tensor()->name);
    }
  };

  if (is_compute_node()) {
    add_depend_tensors_from_expr(body());
  } else if (is_call_node()) {
    add_depend_tensors_from_expr(body());
  } else if (is_extern_call_node()) {
    add_depend_tensors_from_expr(body());
  } else if (is_placeholder_node()) {
    return names;
  } else {
    CINN_NOT_IMPLEMENTED
  }

  return names;
}

Expr Tensor::operator()(const std::vector<Expr> &indices) const {
86 87
  CHECK(!self()->is_tuple()) << "should extract a specific value from the "
                                "tuple and operate on that instead";
88 89
  auto *node = operator->();

90 91
  CHECK_EQ(indices.size(), ndims())
      << "number of indices not match the dimension";
92 93 94 95 96 97 98 99 100 101 102 103 104 105

  return Load::Make(*this, indices);
}

Expr _Tensor_::inline_expanded(const std::vector<Expr> &indices) {
  CHECK(is_compute_node());
  return get_compute_op()->producer_fn(indices);
}

const char *_Tensor_::operation_type() const {
  if (!operation.defined()) return "";
  return operation->as<ir::_Operation_>()->func_type();
}

106 107 108
bool _Tensor_::is_compute_node() const {
  return std::strcmp(operation_type(), ir::ComputeOp::__func_type__) == 0;
}
109 110 111
bool _Tensor_::is_placeholder_node() const {
  return std::strcmp(operation_type(), ir::PlaceholderOp::__func_type__) == 0;
}
112 113 114
bool _Tensor_::is_call_node() const {
  return std::strcmp(operation_type(), ir::CallOp::__func_type__) == 0;
}
115 116
bool _Tensor_::is_extern_call_node() const {
  if (std::strcmp(operation_type(), ir::CallOp::__func_type__) == 0) {
117
    auto *op = operation->as<ir::CallOp>();
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    auto *call = op->call_expr.As<ir::Call>();
    if (call) {
      return call->is_extern_call();
    }
  }
  return false;
}
bool _Tensor_::is_buffer_shared_node() const {
  return std::strcmp(operation_type(), ir::BufferShareOp::__func_type__) == 0;
}

bool _Tensor_::is_preceding_view_node() const {
  return std::strcmp(operation_type(), ir::PrecedingViewOp::__func_type__) == 0;
}

ComputeOp *_Tensor_::get_compute_op() const {
  if (!is_compute_node()) return nullptr;
  return operation->as<ComputeOp>();
}

PlaceholderOp *_Tensor_::get_placeholder_op() const {
  if (!is_placeholder_node()) return nullptr;
  return operation->as<PlaceholderOp>();
}

void _Tensor_::InitAxis() const {
  // CHECK(!domain_without_reduce_axis().empty());
  axis_ = common::GenDefaultAxis(domain_without_reduce_axis().size());
}

bool _Tensor_::has_expression() const {
149 150
  return (!is_placeholder_node()) && (!is_tuple_get()) &&
         (!is_buffer_shared_node());
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
}

isl::set _Tensor_::GenerateIslDomain() const {
  // include the reduce axis.
  std::vector<poly::Dim> dims;

  if (has_expression()) {
    if (axis_.empty()) InitAxis();
    auto domain = domain_with_reduce_axis();
    CHECK_EQ(axis_with_reduce().size(), domain.size());
    auto _axis_with_reduce = axis_with_reduce();
    for (int i = 0; i < domain.size(); i++) {
      auto dim = domain[i];
      if (dim.is_constant()) {
        dims.emplace_back(_axis_with_reduce[i]->name, 0, dim.as_int32() - 1);
      } else {
167 168 169
        dims.emplace_back(_axis_with_reduce[i]->name,
                          Expr(0),
                          Sub::Make(dim, common::make_const(1)));
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
      }
    }
  }

  poly::Domain isl_domain(Context::isl_ctx(), name, dims);
  VLOG(1) << "name:" << this->name << ", domain: " << isl_domain.__str__();
  return isl_domain.to_isl();
}

std::vector<Expr *> _Tensor_::expr_fields() {
  std::vector<Expr *> res;
  const char *func_type = operation->as<ir::_Operation_>()->func_type();
  if (operation.defined()) {
    if (is_compute_node()) {
      auto *op = operation->as<ir::ComputeOp>();
      for (auto &expr : op->body) res.push_back(&expr);
    } else if (is_placeholder_node()) {
      auto *op = operation->as<ir::PlaceholderOp>();
    } else if (is_call_node()) {
      auto *op = operation->as<ir::CallOp>();
      for (auto &expr : op->read_args()) res.push_back(&expr);
    } else if (is_buffer_shared_node()) {
    } else {
      CINN_NOT_IMPLEMENTED
    }
  }

  for (auto &e : shape) {
    res.push_back(&e);
  }
  for (auto &e : domain) {
    res.push_back(&e);
  }
  return res;
}

std::vector<const Expr *> _Tensor_::expr_fields() const {
  std::vector<const Expr *> res;
  const char *func_type = operation->as<ir::_Operation_>()->func_type();
  if (operation.defined()) {
    if (is_compute_node()) {
      auto *op = operation->as<ir::ComputeOp>();
      for (auto &expr : op->body) res.push_back(&expr);
    } else if (is_placeholder_node()) {
      auto *op = operation->as<ir::PlaceholderOp>();
    } else if (is_call_node()) {
      auto *op = operation->as<ir::CallOp>();
      for (auto &expr : op->read_args()) res.push_back(&expr);
    } else if (is_buffer_shared_node()) {
    } else {
      LOG(ERROR) << "func_type: " << func_type;
      CINN_NOT_IMPLEMENTED
    }
  }

  for (auto &e : shape) {
    res.push_back(&e);
  }
  for (auto &e : domain) {
    res.push_back(&e);
  }

  return res;
}

_Tensor_::~_Tensor_() {}

Expr _Tensor_::body() const {
  if (is_placeholder_node()) return Expr();
  if (is_buffer_shared_node()) return Expr();
  if (is_compute_node()) return operation->as<ir::ComputeOp>()->body.front();
  if (is_call_node()) return operation->as<ir::CallOp>()->call_expr;
  CINN_NOT_IMPLEMENTED;
}

Expr *_Tensor_::mutable_body() {
  if (is_placeholder_node()) return nullptr;
  if (is_buffer_shared_node()) return nullptr;
  if (is_compute_node()) return &operation->as<ir::ComputeOp>()->body.front();
  if (is_call_node()) return &operation->as<ir::CallOp>()->call_expr;
  CINN_NOT_IMPLEMENTED
}

253 254 255 256
ir::Tensor _Tensor_::InitReduction(poly::StageMap stages,
                                   const Target &target) const {
  CHECK(contains_reduce_axis())
      << "InitReduction only works on a reduce tensor";
257 258
  // return if already rexists.
  std::string init_reduce_tensor_name = GenReduceInitTensorNameOf(name);
259 260
  if (stages->Lookup(init_reduce_tensor_name))
    return stages[this]->LookupCtrlDepend(init_reduce_tensor_name);
261 262 263

  // create a new init tensor.
  auto init_tensor = lang::Compute(
264 265 266
      domain,
      [=](const std::vector<Expr> &axis) { return GetReduceInitVal(); },
      init_reduce_tensor_name);
267 268
  stages->InsertLazily(init_tensor);
  std::string this_transform = isl_map_to_str(stages[this]->transform().get());
269
  isl::ctx this_ctx = stages[this]->transform().ctx();
270
  isl::map temp_transform(this_ctx, this_transform);
271 272 273 274 275 276 277 278 279 280 281
  int reduce_axis_num = this->reduce_axis.size();
  auto dim_out_names =
      poly::isl_get_dim_names(stages[this]->transform(), isl_dim_out);
  auto dim_in_size = isl_map_dim(stages[this]->transform().get(), isl_dim_in);
  auto dim_in_names =
      poly::isl_get_dim_names(stages[this]->transform(), isl_dim_in);
  std::vector<std::string> reduce_axis_input =
      stages[this]->origin_reduce_axis_names();
  auto origin_domain = stages[this]->domain();
  auto reduce_axis_output = poly::GetRelatedOutputAxies(
      temp_transform, origin_domain, reduce_axis_input);
282 283 284 285 286 287 288 289 290 291 292 293 294
  std::set<std::string> reduce_axis_output_set;
  for (auto &i : reduce_axis_output) {
    reduce_axis_output_set.insert(i);
  }
  int compute_at_axis = -1;
  for (auto &i : dim_out_names) {
    if (reduce_axis_output_set.count(i) == 0) {
      compute_at_axis++;
    } else {
      break;
    }
  }

295 296
  temp_transform = poly::RemoveAxiesByOutputNames(
      temp_transform, origin_domain, reduce_axis_output);
297 298 299 300 301 302 303 304 305 306 307 308

  //! When the first axis is not reduce axis, do ComputeAt.
  if (compute_at_axis >= 0) {
    stages[init_tensor]->ComputeAt2(stages[this], compute_at_axis);
    init_tensor->new_indices = this->new_indices;
    stages[this]->CtrlDepend(init_tensor);
    stages[init_tensor]->ShareBufferWith(stages[this]);
    init_tensor->shape = shape;
    return init_tensor;
  }
  //! When reduce axies are reordered to front, ComputeAt is illegal.
  //! So we just copy transform and forloopInfo.
309 310 311 312
  isl_map_set_tuple_name(
      temp_transform.get(), isl_dim_in, init_reduce_tensor_name.c_str());
  isl_map_set_tuple_name(
      temp_transform.get(), isl_dim_out, init_reduce_tensor_name.c_str());
313
  stages[init_tensor]->SetTransform(temp_transform);
314 315 316 317
  auto init_dim_out_names =
      poly::isl_get_dim_names(temp_transform, isl_dim_out);
  std::map<int, poly::StageForloopInfo> temp_forloop_info =
      stages[this]->forloop_infos();
318 319 320 321
  std::map<int, poly::StageForloopInfo> init_forloop_info;
  for (auto &i : temp_forloop_info) {
    for (int j = 0; j < init_dim_out_names.size(); j++) {
      if (i.first < 0) continue;
322 323
      int new_i = poly::isl_get_original_axes_from_optimized_level(
          stages[this]->transformed_domain().get(), i.first);
324 325 326 327 328 329 330 331 332 333 334 335
      if (dim_out_names[new_i] == init_dim_out_names[j]) {
        stages[init_tensor]->AddForloopInfo(j, i.second);
      }
    }
  }
  init_tensor->new_indices = this->new_indices;
  stages[this]->CtrlDepend(init_tensor);
  stages[init_tensor]->ShareBufferWith(stages[this]);
  init_tensor->shape = shape;
  return init_tensor;
}

336 337
ir::Tensor _Tensor_::GetInitTensor(poly::StageMap stages,
                                   const Target &target) const {
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  return InitReduction(stages, target);
}

Expr _Tensor_::tensor_store_expanded_body() {
  CHECK(!is_placeholder_node()) << "placeholder should not expand store";

  Expr final_body = body();
  if (shape.empty()) return final_body;

  std::vector<Expr> g_axis = common::GenDefaultAxisAsExpr(shape.size());
  if (!new_indices.empty()) {
    g_axis = new_indices;
  }

  auto *reduce_node = body().As<ir::Reduce>();
  if (reduce_node) {
    final_body = reduce_node->body;
    switch (reduce_node->reduce_type) {
      case ir::Reduce::kSum:
        final_body = Tensor(this)(g_axis) + final_body;
        break;
      case ir::Reduce::kMul:
        final_body = Tensor(this)(g_axis) * final_body;
        break;
      case ir::Reduce::kMax:
        final_body = Max::Make(Tensor(this)(g_axis), final_body);
        break;
      case ir::Reduce::kMin:
        final_body = Min::Make(Tensor(this)(g_axis), final_body);
        break;
      case ir::Reduce::kAll:
        final_body = Tensor(this)(g_axis) && final_body;
        break;
      case ir::Reduce::kAny:
        final_body = Tensor(this)(g_axis) || final_body;
        break;
      default:
        CINN_NOT_IMPLEMENTED
    }
  }

  if (is_tuple()) return final_body;

  return ir::Store::Make(Expr(Buffer(this)), final_body, g_axis);
}

void _Tensor_::Bind(lang::Buffer &buffer) {
  // CHECK(!inlined()) << "Inlined tensor should bing buffer";
  CHECK(!buffer->type().is_void());
  if (this->buffer.defined()) {
    // remove the old buffer
    if (this->buffer == buffer.buffer()) return;
    this->buffer->Unbind(this);
  }
  // Extract the tensors thouse has binded to this buffer.
  buffer_depended_tensor_names_ = buffer.buffer()->binded_tensor_names();

  buffer.buffer()->BindTo(this);
  CHECK(!buffer->binded_tensor_names().empty());
  this->buffer = buffer.buffer();
  CHECK(this->buffer.defined());
}

void _Tensor_::Bind(const Buffer &buffer) {
  lang::Buffer buf(buffer);
  Bind(buf);
}

void _Tensor_::WithBuffer(const Type &type) {
  Type buf_type = type.is_void() ? type_ : type;
  lang::Buffer buf(buf_type);
  buf->target = common::DefaultHostTarget();
  Bind(buf);
}

413 414 415
void _Tensor_::WithBuffer(const std::string &memory_type,
                          const std::string &buffer_name,
                          const Type &type) {
416 417 418
  Type buf_type = type.is_void() ? type_ : type;
  if (this->buffer.defined()) {
    this->buffer->dtype = buf_type;
419
    this->buffer->name = buffer_name;
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    if (memory_type == "shared") {
      this->buffer->memory_type = MemoryType::GPUShared;
    } else if (memory_type == "local") {
      this->buffer->memory_type = MemoryType::GPULocal;
    } else if (memory_type == "global") {
      this->buffer->memory_type = MemoryType::Heap;
    } else {
      LOG(FATAL) << "Not supported memory type " << memory_type;
    }
  } else {
    lang::Buffer buf(buf_type, buffer_name);
    buf->target = common::DefaultHostTarget();
    Bind(buf);

    if (memory_type == "shared") {
      buf->memory_type = MemoryType::GPUShared;
    } else if (memory_type == "local") {
      buf->memory_type = MemoryType::GPULocal;
    } else if (memory_type == "global") {
      buf->memory_type = MemoryType::Heap;
    } else {
      LOG(FATAL) << "Not supported memory type " << memory_type;
    }
  }
}

bool _Tensor_::HasSameShapeWith(const Tensor &other) const {
  if (shape.size() != other->shape.size()) return false;

  for (int i = 0; i < shape.size(); i++) {
    Expr dim0 = common::AutoSimplify(shape[i]);
    Expr dim1 = common::AutoSimplify(other->shape[i]);

    if (dim0 != dim1) return false;
  }
  return true;
}

Tensor _Tensor_::TupleGet(int offset) const {
  CHECK(is_tuple());
  auto *call = body().As<ir::Call>();
  CHECK_LT(offset, call->write_args.size());
  auto tensor = call->write_args[offset].as_tensor_ref();
  tensor->WithBuffer();
  return tensor;
}

bool _Tensor_::is_tuple() const {
  if (!has_expression()) return false;
  auto *call = body().As<ir::Call>();
  if (call && call->is_extern_call() && !call->write_args.empty()) return true;
  return false;
}

std::vector<Expr> _Tensor_::domain_with_reduce_axis() const {
  if (reduce_axis.empty()) return domain;
  auto res = domain;
  for (const Var &axis : reduce_axis) {
    CHECK(axis->upper_bound.type().is_int(32)) << axis->upper_bound;
    res.push_back(axis->upper_bound);
  }
  return res;
}

bool operator<(const Tensor &a, const Tensor &b) { return a->name < b->name; }

Tensor::Tensor(const std::string &name,
               Type dtype,
               const std::vector<Expr> &shape,
               const std::vector<Expr> &domain,
               FunctionRef fn,
               const std::vector<Var> &reduce_axis)
492 493
    : IrNodeRef(
          _Tensor_::Make(name, dtype, shape, domain, fn, reduce_axis).self()) {}
494 495 496

bool _Tensor_::is_tuple_get() const {
  return is_call_node() && operation.defined() &&
497 498
         operation->as<ir::_Operation_>()->func_type() ==
             ir::CallOp::__func_type__ &&
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
         operation->as<ir::CallOp>()->is_tuple_get;
}

bool _Tensor_::IsDependOnStatement(absl::string_view statement) {
  if (!is_compute_node()) {
    return false;
  }

  auto depend_tensors = DependingTensorNames();
  for (const auto &x : depend_tensors) {
    if (x == statement) return true;
  }
  return false;
}

std::set<std::string> _Tensor_::DependingTensorNames() {
  std::set<std::string> res;
  if (body().defined()) {
517 518
    auto depend_tensors = ir::CollectIRNodes(
        body(), [](const Expr *x) -> bool { return x->as_tensor(); });
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    for (const auto &x : depend_tensors) {
      if (x.get() != this) {
        res.insert(x.as_tensor()->name);
      }
    }
  }
  return res;
}

const std::vector<Var> &_Tensor_::axis() const {
  CHECK_EQ(axis_.size(), domain_without_reduce_axis().size());
  return axis_;
}

std::vector<Var> _Tensor_::axis_with_reduce() const {
  auto axis = axis_;
  axis.insert(axis.end(), reduce_axis.begin(), reduce_axis.end());
  return axis;
}

bool _Tensor_::Uses(const Tensor &other) const {
  auto loads = ir::CollectIRNodes(body(), [&](const Expr *x) {
    auto *loadn = x->As<ir::Load>();
    if (!loadn) return false;
    return loadn->tensor.as_tensor()->name == other->name;
  });
  return !loads.empty();
}

548 549
ir::Tensor _Tensor_::Reshape(const std::vector<Expr> &shape,
                             poly::StageMap stages) const {
550
  CHECK(!stages[this]->inlined());
551 552
  auto op = BufferShareOp::Make();
  auto n = make_shared<_Tensor_>();
553 554 555 556 557 558 559 560 561
  auto selft = Tensor(const_cast<ir::_Tensor_ *>(this));

  {
    Expr this_num_elements = Expr(1);
    for (auto &e : this->shape) this_num_elements = this_num_elements * e;

    Expr num_elements = Expr(1);
    for (auto &e : shape) num_elements = num_elements * e;

562 563
    CHECK(MathIsZero(this_num_elements - num_elements))
        << "number of elements mismatch";
564 565
  }

566 567
  n->name = Context::Global().NewName(name + "_reshape");
  n->shape = shape;
568 569 570 571 572 573 574 575 576 577 578 579 580
  n->domain = shape;
  n->set_type(type());
  n->operation = op;
  n->InitAxis();

  auto t = Tensor(n);
  stages->InsertLazily(t);

  stages[n]->ShareBufferWith(stages[this]);
  stages[n]->CtrlDepend(selft);
  return t;
}

581 582 583
ir::Tensor _Tensor_::ReshapeCopied(const std::vector<Expr> &shape,
                                   poly::StageMap stages) const {
  auto t = ir::Tensor(const_cast<ir::_Tensor_ *>(this));
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
  auto copied = Compute(
      domain,
      [=](const std::vector<Expr> &axis) { return t(axis); },
      Context::Global().NewName(this->name + "_copied"));
  stages->InsertLazily(copied);
  auto res = copied->Reshape(shape, stages);
  stages->InsertLazily(res);
  return res;
}

Shared<poly::Stage> CreateStage(Tensor tensor) {
  auto isl_domain = tensor->GenerateIslDomain();
  return poly::Stage::New(isl_domain, tensor->body(), tensor.self());
}

599 600 601
std::string GenReduceInitTensorNameOf(const std::string &tensor_name) {
  return tensor_name + "__reduce_init";
}
602 603 604

bool _Tensor_::is_reduce_sum() const {
  if (!contains_reduce_axis()) return false;
605 606
  return body().As<ir::Reduce>() &&
         body().As<ir::Reduce>()->reduce_type == ir::Reduce::ReduceType::kSum;
607 608 609
}
bool _Tensor_::is_reduce_mul() const {
  if (!contains_reduce_axis()) return false;
610 611
  return body().As<ir::Reduce>() &&
         body().As<ir::Reduce>()->reduce_type == ir::Reduce::ReduceType::kMul;
612 613 614 615 616 617 618
}

Expr _Tensor_::GetReduceInitVal() const {
  CHECK(is_reduce_tensor());
  return body().As<ir::Reduce>()->init;
}

619 620 621
bool _Tensor_::IsReduceInited(poly::StageMap stages) const {
  return stages->Lookup(GenReduceInitTensorNameOf(name));
}
622 623 624 625 626 627 628 629 630

void _Tensor_::Verify() const {
  CHECK(!shape.empty());
  CHECK(!domain.empty());
  CHECK(!name.empty()) << "Name of tensor should be set";
}

}  // namespace ir
}  // namespace cinn