cas.cc 70.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
// Copyright (c) 2021 CINN Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/cinn/common/cas.h"

#include <algorithm>
#include <cmath>
#include <string>
#include <utility>

#include "paddle/cinn/common/arithmatic.h"
#include "paddle/cinn/common/ir_util.h"
#include "paddle/cinn/ir/collect_ir_nodes.h"
#include "paddle/cinn/ir/ir_mutator.h"
#include "paddle/cinn/ir/ir_operators.h"
#include "paddle/cinn/ir/ir_printer.h"
#include "paddle/cinn/ir/ir_visitor.h"
#include "paddle/cinn/optim/cast_simplify.h"
#include "paddle/cinn/optim/ir_copy.h"
#include "paddle/cinn/utils/string.h"

namespace cinn {
namespace common {
using namespace ir;  // NOLINT

37 38 39
Expr AutoSimplify(
    Expr u,
    const absl::flat_hash_map<std::string, CasInterval>& var_intervals) {
40 41 42 43 44 45 46 47 48
  VLOG(7) << "Begin AutoSimplify: " << u;
  u = detail::ConvertCinnToCAS(u);
  absl::flat_hash_map<std::string, CasInterval> s_var_intervals;
  for (auto& item : var_intervals) {
    if (item.second.e_l.defined() && item.second.e_r.defined()) {
      Expr e_l = detail::ConvertCinnToCAS(item.second.e_l);
      Expr e_r = detail::ConvertCinnToCAS(item.second.e_r);
      s_var_intervals.emplace(item.first, CasInterval(e_l, e_r));
    } else {
49 50
      s_var_intervals.emplace(item.first,
                              CasInterval(item.second.l, item.second.r));
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    }
  }
  u = CasSimplify(u, s_var_intervals);
  u = detail::ConvertCasToCinn(u);
  VLOG(7) << "End AutoSimplify " << u;
  return u;
}

int gcd(int a, int b) {
  // Everything divides 0
  if (a == 0) return b;
  if (b == 0) return a;
  if (a == 1 || b == 1) return 1;
  if (a < 0 || b < 0) {
    return gcd(std::abs(a), std::abs(b));
  }

  // base case
  if (a == b) return a;

  // a is greater
  if (a > b) return gcd(a - b, b);
  return gcd(a, b - a);
}

76 77
//////// All the following symbolic computation methods are implemented
/// referencing to the book <Computer Algegra and
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/// Symbolic Computation - Joel S. Cohen>

template <typename T>
std::vector<T> EraseFront(const std::vector<T>& vs) {
  return std::vector<T>(vs.begin() + 1, vs.end());
}

template <typename T>
std::vector<T> Concat(const std::vector<T>& as, const std::vector<T>& bs) {
  auto res = as;
  res.insert(std::end(res), bs.begin(), bs.end());
  return res;
}

// 3*x*2*y => 3*2
// x => 1
Expr ProductGetConstantPart(Expr u) {
  auto* product = u.As<Product>();
  if (product) {
    std::vector<Expr> constant_operands;
    for (auto& i : product->operands()) {
      if (i.is_constant()) {
        constant_operands.push_back(i);
      }
    }
    if (constant_operands.empty())
      return make_const(u->type(), 1);
    else if (constant_operands.size() == 1)
      return constant_operands.front();
    else
      return Product::Make(constant_operands);
  }
  return make_const(u->type(), 1);
}

// 3*x*2*y => x*y
// x => x
Expr ProductGetNonConstantPart(Expr u) {
  auto* product = u.As<Product>();
  if (product) {
    std::vector<Expr> nonconstant_operands;
    for (auto& i : product->operands()) {
      if (!i.is_constant()) {
        nonconstant_operands.push_back(i);
      }
    }
    if (nonconstant_operands.empty()) {
      return make_const(u->type(), 1);
    } else if (nonconstant_operands.size() == 1)
      return nonconstant_operands.front();
    else
      return Product::Make(nonconstant_operands);
  }
  return u;
}

namespace detail {

// Is a Divisible to b.
// @{
bool IsDivisible(int64_t a, int64_t b) {
  CHECK_NE(b, 0);
  return a % b == 0;
}
bool IsDivisible(const Sum* a, int b);

// If int a Divisible to any operands of product b
bool IsDivisible(int a, const Product* b) {
  if (a < 0) return false;
  for (auto& item : b->operands()) {
148 149 150
    if (item.As<IntImm>() && item.As<IntImm>()->value > 0 &&
        IsDivisible(a, item.As<IntImm>()->value))
      return true;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  }
  return false;
}
bool IsDivisible(const Product* a, int b) {
  for (auto& item : a->operands()) {
    if (item.As<IntImm>() && IsDivisible(item.As<IntImm>()->value, b)) {
      return true;
    }
    if (item.As<Sum>() && IsDivisible(item.As<Sum>(), b)) return true;
  }
  return false;
}
bool IsDivisible(const Sum* a, int b) {
  for (auto& item : a->operands()) {
    auto* vi = item.As<IntImm>();
    auto* vp = item.As<Product>();
    if (vi && IsDivisible(vi->value, b)) continue;
    if (vp && IsDivisible(vp, b)) continue;
    return false;
  }
  return true;
}
bool IsDivisible(Expr a, int b) {
  auto* ai = a.As<IntImm>();
  auto* as = a.As<Sum>();
  auto* ap = a.As<Product>();

  if (ai) return IsDivisible(ai->value, b);
  if (as) return IsDivisible(as, b);
  if (ap) return IsDivisible(ap, b);
  return false;
}
// @}

//! Divide a by b, NOTE that a should be divisible by b.
// @{
Expr Divide(const Product* a, int b);
Expr Divide(const Sum* a, int b) {
  std::vector<Expr> args;
  for (auto& item : a->operands()) {
    if (item.As<IntImm>())
      args.push_back(make_const(item.type(), item.As<IntImm>()->value / b));
    else if (item.As<Product>())
      args.push_back(Divide(item.As<Product>(), b));
    else
      CINN_NOT_IMPLEMENTED
  }
  return Sum::Make(args);
}
Expr Divide(const Product* a, int b) {
  std::vector<Expr> args;
202 203
  int i = 0;
  int times = -1;
204 205 206 207
  bool is_divisible = false;
  for (i = 0; i < a->operands().size(); i++) {
    auto* a_i = a->operand(i).As<IntImm>();
    if (a_i && a_i->value % b == 0) {
208
      times = a_i->value / b;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
      is_divisible = true;
      break;
    }
  }
  // Case is_divisible : a = 8x and b = 4 and a/b = 2x
  // Case !is_divisible : a = 2x and b = 8 and a/b = x/4
  if (is_divisible) {
    // NOTE that a should be divisible by b.
    if (times != 1) {
      args.push_back(make_const(a->type(), times));
    }
    for (int j = 0; j < a->operands().size(); j++) {
      if (j == i) continue;
      args.push_back(a->operand(j));
    }
    return Product::Make(args);
  } else {
    for (i = 0; i < a->operands().size(); i++) {
      auto* a_i = a->operand(i).As<IntImm>();
      if (a_i && b % a_i->value == 0) {
        b = b / a_i->value;
      } else {
        args.push_back(a->operand(i));
      }
    }
    return FracOp::Make(Product::Make(args), Expr(b));
  }
  return Product::Make(args);
}

// @}

inline int Iquot(int n, int d) { return n / d; }

inline int Irem(int n, int d) {
  int k = Iquot(n, d);
  return n - d * k;
}

Expr CasSimplifyMutator::SimplifyRationalNumber(Expr u) {
  auto* frac_n = u.As<FracOp>();
  if (frac_n) {
    Expr n = frac_n->a();
    Expr d = frac_n->b();

    auto* ni = n.As<IntImm>();
    auto* di = d.As<IntImm>();

    CHECK(ni && di);
    int nv = ni->value;
    int dv = di->value;

    if (Irem(nv, dv) == 0) {
      return Expr(make_const(u.type(), Iquot(nv, dv)));
    } else {
      int g = gcd(nv, dv);
      if (dv > 0) {
        return FracOp::Make(make_const(Iquot(nv, g)), make_const(Iquot(dv, g)));
      } else {
268 269
        return FracOp::Make(make_const(Iquot(-nv, g)),
                            make_const(Iquot(-dv, g)));
270 271 272 273 274 275 276 277
      }
    }
  }
  return u;
}

Expr SumOrProductGetSingleElementsRec(Expr u) {
  auto* product = u.As<Product>();
278
  auto* sum = u.As<Sum>();
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  if (product && product->operands().size() == 1) {
    return SumOrProductGetSingleElementsRec(u->operands.front());
  }
  if (sum && sum->operands().size() == 1) {
    return SumOrProductGetSingleElementsRec(u->operands.front());
  }
  return u;
}

// Order, reference to Page 85.
bool ExprPosCmp::operator()(const Expr& a, const Expr& b) {
  // O-1, 1 <| 2
  VLOG(7) << "Begin ExprPosCmp, a: " << a << ", b: " << b;
  if (a.is_constant() && b.is_constant()) {
    return a.get_constant() < b.get_constant();
  }

  // O-2, both are symbols, compare by the lexicographical order.
  if (a.As<_Var_>() && b.As<_Var_>()) {
    return a.As<_Var_>()->name < b.As<_Var_>()->name;
  }

301 302
  // O-3, if a and b are either both products or both sums, compare by each
  // element similar to lexicographical order.
303 304 305
  if ((a.As<Product>() && b.As<Product>()) || (a.As<Add>() && b.As<Add>())) {
    auto& aoprs = a->operands;
    auto& boprs = b->operands;
306
    int m = std::min(aoprs.size(), boprs.size());
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

    for (int i = 0; i < m; i++) {
      // ugly compare representation in string.
      auto& aopr = aoprs[aoprs.size() - 1 - i];
      auto& bopr = boprs[boprs.size() - 1 - i];
      if (aopr != bopr) return operator()(aopr, bopr);
    }

    return aoprs.size() < boprs.size();
  }

  // customized case, if both are mod
  {
    auto* am = a.As<Mod>();
    auto* bm = b.As<Mod>();
    if (am && bm) {
      if (am->b() != bm->b()) {
        return operator()(am->b(), bm->b());
      }
      return operator()(am->a(), bm->a());
    }
  }

  // O-7, if a is an integer or fraction and v is any other type, 1 < x
  if (a.As<IntImm>() || a.As<FloatImm>() || a.As<FracOp>()) {
    if (!(b.As<IntImm>() || b.As<FloatImm>() || b.As<FracOp>())) return true;
  }
  if (b.As<IntImm>() || b.As<FloatImm>() || b.As<FracOp>()) {
    if (!(a.As<IntImm>() || a.As<FloatImm>() || a.As<FracOp>())) return false;
  }

  // O-8, if a is a product, v is a sum, fractional, or symbol
  {
    auto* ap = a.As<Product>();

    if (ap && (b.As<Sum>() || b.As<Call>() || b.As<_Var_>() || b.As<Mod>())) {
      return operator()(a, Product::Make({b}));
    }
  }

  {
    if (a.As<Mod>()) {
      if (!b.As<Mod>()) {
        // Todo: may be wrong especially for negative value
        return operator()(a, Mod::Make(b, Sum::Make({b, Expr(1)})));
      }
    }
  }

  // O-10, if a is a sum, b is a function, or symbol
  {
    if (a.As<Sum>()) {
      if (b.As<_Var_>()) {
        return operator()(a.As<Sum>()->operand(0), {b});
      }
    }
  }

  return false;
}

368 369 370 371 372 373 374 375
std::vector<Expr> CasSimplifyMutator::MergeProduct(const std::vector<Expr>& p,
                                                   const std::vector<Expr>& q) {
  return MergeExprs(p,
                    q,
                    std::bind(&CasSimplifyMutator::SimplifyBinaryProduct,
                              this,
                              std::placeholders::_1,
                              std::placeholders::_2));
376 377
}

378 379
std::vector<Expr> CasSimplifyMutator::SimplifyBinaryProduct(Expr left,
                                                            Expr right) {
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
  // SPRDREC-1
  if (!left.As<Product>() && !right.As<Product>()) {
    auto a = left;
    auto b = right;

    auto* ai = a.As<IntImm>();
    auto* af = a.As<FloatImm>();
    auto* bi = b.As<IntImm>();
    auto* bf = b.As<FloatImm>();

    // case 1, both are constants
    if (a.is_constant() && b.is_constant()) {
      if (ai) return {make_const(a.type(), ai->value * bi->value)};
      if (af) return {make_const(a.type(), af->value * bf->value)};
    }

    if (a.As<Max>() || a.As<Min>() || b.As<Max>() || b.As<Min>()) {
      // cinn_min/cinn_max(a, b) * 2 = cinn_min/cinn_max(2*a, 2*b)
      // 2 * cinn_min/cinn_max(a, b) = cinn_min/cinn_max(2*a, 2*b)
      // cinn_min/cinn_max(a, b) * -2 = cinn_max/cinn_min(-2*b, -2*a)
      // -2 * cinn_min/cinn_max(a, b) = cinn_max/cinn_min(-2*b, -2*a)
      Expr const_oper;
      Expr cmp_oper;
      int const_value;
      if (ai) {
405 406
        const_oper = a;
        cmp_oper = b;
407 408 409
        const_value = ai->value;
      }
      if (af) {
410 411
        const_oper = a;
        cmp_oper = b;
412 413 414
        const_value = af->value;
      }
      if (bi) {
415 416
        const_oper = b;
        cmp_oper = a;
417 418 419
        const_value = bi->value;
      }
      if (bf) {
420 421
        const_oper = b;
        cmp_oper = a;
422 423 424 425 426 427 428 429 430 431
        const_value = bf->value;
      }
      if (const_value == 0) {
        return {make_const(a->type(), 0)};
      }
      if (cmp_oper.defined() && const_oper.defined()) {
        auto cmp_min = cmp_oper.As<Min>();
        auto cmp_max = cmp_oper.As<Max>();
        if (const_value > 0) {
          if (cmp_min) {
432 433 434 435 436 437
            return {CasSimplify(
                Min::Make(CasSimplify(Product::Make({cmp_min->a(), const_oper}),
                                      var_intervals),
                          CasSimplify(Product::Make({cmp_min->b(), const_oper}),
                                      var_intervals)),
                var_intervals)};
438 439
          }
          if (cmp_max) {
440 441 442 443 444 445
            return {CasSimplify(
                Max::Make(CasSimplify(Product::Make({cmp_max->a(), const_oper}),
                                      var_intervals),
                          CasSimplify(Product::Make({cmp_max->b(), const_oper}),
                                      var_intervals)),
                var_intervals)};
446 447 448
          }
        } else {
          if (cmp_min) {
449 450 451 452 453 454
            return {CasSimplify(
                Max::Make(CasSimplify(Product::Make({cmp_min->b(), const_oper}),
                                      var_intervals),
                          CasSimplify(Product::Make({cmp_min->a(), const_oper}),
                                      var_intervals)),
                var_intervals)};
455 456
          }
          if (cmp_max) {
457 458 459 460 461 462
            return {CasSimplify(
                Min::Make(CasSimplify(Product::Make({cmp_max->b(), const_oper}),
                                      var_intervals),
                          CasSimplify(Product::Make({cmp_max->a(), const_oper}),
                                      var_intervals)),
                var_intervals)};
463 464 465 466 467 468
          }
        }
      }
    }

    {  // FracOp related constants.
469 470
      // NOTE the integer division is weried in C language, 1/2 = 0, that is
      // huge different from a real CAS.
471 472 473 474
      auto* af = a.As<FracOp>();
      auto* bf = b.As<FracOp>();
      // 1/2 * 2/3
      if (af && bf && a->type().is_float()) {
475 476
        return {CasSimplify(FracOp::Make(Product::Make({af->a(), bf->a()}),
                                         Product::Make({af->b(), bf->b()})),
477 478 479
                            var_intervals)};
      }
      if (af && !bf && a->type().is_float()) {
480 481
        return {CasSimplify(FracOp::Make(Product::Make({af->a(), b}), af->b()),
                            var_intervals)};
482 483
      }
      if (!af && bf && a->type().is_float()) {
484 485
        return {CasSimplify(FracOp::Make(Product::Make({bf->a(), a}), bf->b()),
                            var_intervals)};
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
      }
    }

    // case 2
    // x*1 -> a
    if (ai && ai->value == 1) return {b};
    if (af && af->value == 1.f) return {b};
    // 1*x -> x
    if (bi && bi->value == 1) return {a};
    if (bf && bf->value == 1.f) return {a};

    {
      auto* a_sum = a.As<Sum>();
      auto* b_sum = b.As<Sum>();

      if (b_sum) {
        std::vector<Expr> args;
        for (auto& v : b_sum->operands()) {
          args.push_back(CasSimplify(Product::Make({a, v}), var_intervals));
        }
        return {SimplifySum(Sum::Make(args))};
      }

      if (a_sum) {
        std::vector<Expr> args;
        for (auto& v : a_sum->operands()) {
          args.push_back(CasSimplify(Product::Make({b, v}), var_intervals));
        }
        return {SimplifySum(Sum::Make(args))};
      }
    }

    // case 4, b <| a
    {
      if (ExprPosCmp()(b, a)) {
        return {b, a};
      }
    }

    return {left, right};
  }

  // SPRDREC-2, Page 101
  if (left.As<Product>() || right.As<Product>()) {
    auto a = left;
    auto b = right;

    auto* a_product = a.As<Product>();
    auto* b_product = b.As<Product>();
    // case 1
    if (a_product && b_product) {
      return MergeProduct(a_product->operands(), b_product->operands());
    }

    // case 2
    if (a_product) {
      return MergeProduct(a_product->operands(), {b});
    }

    // case 3
    if (b_product) {
      return MergeProduct({a}, b_product->operands());
    }
  }

  return {left, right};
}

554 555 556 557 558 559
std::vector<Expr> CasSimplifyMutator::SimplifyProductRec(
    const std::vector<Expr>& operands) {
  if (operands.size() < 2)
    return {CasSimplify(operands.front(), var_intervals)};
  auto mid_it = operands.begin() + operands.size() / 2;
  auto&& left = SimplifyProductRec(std::vector<Expr>(operands.begin(), mid_it));
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
  auto&& right = SimplifyProductRec(std::vector<Expr>(mid_it, operands.end()));
  return MergeProduct(left, right);
}

Expr CasSimplifyMutator::SimplifyProduct(Expr a) {
  a = SumOrProductGetSingleElementsRec(a);
  // We reuse the Mul node for production.
  auto* prod = a.As<Product>();
  if (!prod) return a;

  const auto& _operands = prod->operands();
  std::vector<Expr> operands;
  for (auto& e : _operands) operands.push_back(CasSimplify(e, var_intervals));
#ifdef CINN_DEBUG
  {
    std::stringstream ss;
    for (auto& v : operands) {
      ss << v << " ";
    }
    VLOG(7) << "operands: " << ss.str();
  };
#endif

  // SPRD-2
  // 0*x... = 0
  for (auto& opr : operands) {
    auto* opri = opr.As<IntImm>();
    auto* oprf = opr.As<FloatImm>();
    if (opri && opri->value == 0) return make_const(a.type(), 0);
    if (oprf && oprf->value == 0) return make_const(a.type(), 0);
  }

  // SPRD-3
  // prod(x) = x, single number.
  if (operands.size() == 1) {
    auto* first_s = operands.front().As<Sum>();
    auto* first_p = operands.front().As<Product>();
    return operands[0];
  }

  // SPRD-4
  return Product::Make(SimplifyProductRec(operands));
}

Expr CasSimplifyMutator::SimplifySum(Expr u) {
  u = SumOrProductGetSingleElementsRec(u);

  auto* sum = u.As<Sum>();
  CHECK(sum);

  auto& operands = sum->operands();

  auto temp = SimplifySpecificSum(u);
  // If temp has been simplified, return it.
  if (!temp.As<Sum>()) return temp;

  operands = temp.As<Sum>()->operands();

  auto args = SimplifySumRec(operands);
  if (args.empty()) return make_const(u.type(), 0);
  if (args.size() == 1) return args[0];
  return Sum::Make(args);
}

624 625 626 627
std::vector<Expr> CasSimplifyMutator::MergeExprs(
    const std::vector<Expr>& p,
    const std::vector<Expr>& q,
    const std::function<std::vector<Expr>(Expr, Expr)>& binary_merge) {
628 629 630 631 632
  std::vector<Expr> res;
  int li = 0, lj = 0;
  while (li < p.size() && lj < q.size()) {
    auto&& p1 = p[li];
    auto&& q1 = q[lj];
633
    auto&& h = binary_merge(p1, q1);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    if (h.size() == 2 && h[0] == p1 && h[1] == q1) {
      ++li;
      res.emplace_back(std::move(h.front()));
    } else if (h.size() == 2 && h[0] == q1 && h[1] == p1) {
      ++lj;
      res.emplace_back(std::move(h.front()));
    } else {
      ++li;
      ++lj;
      std::move(h.begin(), h.end(), std::back_inserter(res));
    }
  }

  if (li < p.size()) res.insert(res.end(), p.begin() + li, p.end());
  if (lj < q.size()) res.insert(res.end(), q.begin() + lj, q.end());
  return std::move(res);
}

// This implementation is similar to MergeProduct
653 654
std::vector<Expr> CasSimplifyMutator::MergeSum(const std::vector<Expr>& p,
                                               const std::vector<Expr>& q) {
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
#ifdef CINN_DEBUG
  {
    std::stringstream ss;
    for (auto& x : p) ss << x << " ";

    VLOG(7) << "MergeSum p(" << ss.str() << ")";
    ss.str("");

    for (auto& x : q) ss << x << " ";
    VLOG(7) << "MergeSum q(" << ss.str() << ")";
    ss.str("");
  }
#endif

  return MergeExprs(p, q, [this](Expr left, Expr right) -> std::vector<Expr> {
    auto&& h = SimplifyBinarySum(std::move(left), std::move(right));
    if (h.size() == 1 && h[0].is_constant() && h[0].get_constant() == 0) {
      return {};
    } else {
      return std::move(h);
    }
  });
}

std::vector<Expr> CasSimplifyMutator::SimplifyBinarySum(Expr left, Expr right) {
  // SPRDREC-1
  if (!left.As<Sum>() && !right.As<Sum>()) {
    auto a = left;
    auto b = right;

    auto* ai = a.As<IntImm>();
    auto* af = a.As<FloatImm>();
    auto* bi = b.As<IntImm>();
    auto* bf = b.As<FloatImm>();

    // case 1, both are constants
    if (a.is_constant() && b.is_constant()) {
      if (ai) return {make_const(a.type(), ai->value + bi->value)};
      if (af) return {make_const(a.type(), af->value + bf->value)};
    }

    // cinn_min/cinn_max(a, b)+c = cinn_min/cinn_max(a+c, b+c)
    // c + cinn_min/cinn_max(a, b) = cinn_min/cinn_max(a+c, b+c)
    auto* a_min = a.As<Min>();
    auto* a_max = a.As<Max>();
    auto* b_min = b.As<Min>();
    auto* b_max = b.As<Max>();
    if (a_min) {
703 704 705 706
      return {CasSimplify(
          Min::Make(CasSimplify(Sum::Make({a_min->a(), b}), var_intervals),
                    CasSimplify(Sum::Make({a_min->b(), b}), var_intervals)),
          var_intervals)};
707 708
    }
    if (a_max) {
709 710 711 712
      return {CasSimplify(
          Max::Make(CasSimplify(Sum::Make({a_max->a(), b}), var_intervals),
                    CasSimplify(Sum::Make({a_max->b(), b}), var_intervals)),
          var_intervals)};
713 714
    }
    if (b_min) {
715 716 717 718
      return {CasSimplify(
          Min::Make(CasSimplify(Sum::Make({b_min->a(), a}), var_intervals),
                    CasSimplify(Sum::Make({b_min->b(), a}), var_intervals)),
          var_intervals)};
719 720
    }
    if (b_max) {
721 722 723 724
      return {CasSimplify(
          Max::Make(CasSimplify(Sum::Make({b_max->a(), a}), var_intervals),
                    CasSimplify(Sum::Make({b_max->b(), a}), var_intervals)),
          var_intervals)};
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    }

    // case 2
    // x*1 -> a
    if (ai && ai->value == 0) return {b};
    if (af && af->value == 0.f) return {b};
    // 1*x -> x
    if (bi && bi->value == 0) return {a};
    if (bf && bf->value == 0.f) return {a};

    // customized case for Mod
    {
      auto* am = a.As<Mod>();
      auto* bm = b.As<Mod>();
      if (am && bm) {
740 741 742 743
        if (am->b() == bm->b() && ProductGetNonConstantPart(am->a()) ==
                                      ProductGetNonConstantPart(bm->a())) {
          return {CasSimplify(Mod::Make(Sum::Make({am->a(), bm->a()}), am->b()),
                              var_intervals)};
744 745 746 747 748
        }
      }
    }

    // case 3
749 750
    // Here is different from SimplifySumRec, to deal with cases like 3x + (-2x)
    // = 2x
751 752
    auto a_non_constant = ProductGetNonConstantPart(a);
    auto b_non_constant = ProductGetNonConstantPart(b);
753 754
    if (a_non_constant.defined() && b_non_constant.defined() &&
        a_non_constant == b_non_constant) {
755 756
      VLOG(7) << "a " << a;
      VLOG(7) << "b " << b;
757 758
      Expr s = SimplifySum(
          Sum::Make({ProductGetConstantPart(a), ProductGetConstantPart(b)}));
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
      Expr p = Product::Make({s, ProductGetNonConstantPart(a)});
      return {CasSimplify(p, var_intervals)};
    }

    // case 4, b <| a
    {
      if (ExprPosCmp()(b, a)) {
        return {b, a};
      }
    }

    return {left, right};
  }

  // SPRDREC-2, Page 101
  if (left.As<Sum>() || right.As<Sum>()) {
    auto a = left;
    auto b = right;

    auto* a_sum = a.As<Sum>();
    auto* b_sum = b.As<Sum>();

    // case 1
    if (a_sum && b_sum) {
      return MergeSum(a_sum->operands(), b_sum->operands());
    }

    // case 2
    if (a_sum) {
      return MergeSum(a_sum->operands(), {b});
    }

    // case 3
    if (b_sum) {
      return MergeSum({a}, b_sum->operands());
    }
  }

  return {left, right};
}

// The implementation is similar to SimplifyProductRec
801 802
std::vector<Expr> CasSimplifyMutator::SimplifySumRec(
    const std::vector<Expr>& operands) {
803 804 805 806 807 808 809 810 811 812
#ifdef CINN_DEBUG
  {
    std::stringstream ss;
    for (auto& o : operands) {
      ss << o.node_type() << " " << o << " ";
    }
    VLOG(7) << "SimplifySumRec operands: " << ss.str();
  }
#endif
  CHECK(!operands.empty());
813 814 815 816
  if (operands.size() < 2)
    return {CasSimplify(operands.front(), var_intervals)};
  auto mid_it = operands.begin() + operands.size() / 2;
  auto&& left = SimplifySumRec(std::vector<Expr>(operands.begin(), mid_it));
817 818 819 820 821 822 823 824 825 826 827 828 829
  auto&& right = SimplifySumRec(std::vector<Expr>(mid_it, operands.end()));
  return MergeSum(left, right);
}

void CasSimplifyMutator::AddBaseAndSimplify(Expr* base, Expr bound) {
  if ((*base).defined()) {
    *base = Sum::Make({*base, bound});
  } else {
    *base = bound;
  }
  *base = CasSimplify(*base, var_intervals);
}

830 831 832 833
void CasSimplifyMutator::UnfoldBound(Expr* lower_bound,
                                     Expr* upper_bound,
                                     Expr var,
                                     bool unfold_const_bound) {
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
  CHECK(lower_bound);
  CHECK(upper_bound);
  auto v_var = var.As<_Var_>();
  CHECK(v_var);
  if (var_intervals.count(v_var->name)) {
    auto& interval = var_intervals.at(v_var->name);
    if (interval.e_l.defined() && interval.e_r.defined()) {
      AddBaseAndSimplify(lower_bound, interval.e_l);
      AddBaseAndSimplify(upper_bound, interval.e_r);
    } else if (unfold_const_bound) {
      // unfold var's const bound
      AddBaseAndSimplify(lower_bound, Expr(interval.l));
      AddBaseAndSimplify(upper_bound, Expr(interval.r));
    } else {
      // no unfold var's const bound for var simplification
      AddBaseAndSimplify(lower_bound, var);
      AddBaseAndSimplify(upper_bound, var);
    }
  } else if (!unfold_const_bound) {
    // not get var's bound for var simplification
    AddBaseAndSimplify(lower_bound, var);
    AddBaseAndSimplify(upper_bound, var);
  } else {
    LOG(FATAL) << "can't get the bound";
  }
}

861 862 863 864
bool CasSimplifyMutator::GetVarBound(Expr* lower_bound,
                                     Expr* upper_bound,
                                     Expr var,
                                     bool unfold_const_bound) {
865 866
  CHECK(lower_bound);
  CHECK(upper_bound);
867
  auto v_var = var.As<_Var_>();
868
  auto v_product = var.As<Product>();
869
  auto v_frac = var.As<FracOp>();
870 871 872 873 874 875 876
  if (v_var && (var_intervals.count(v_var->name) || !unfold_const_bound)) {
    UnfoldBound(lower_bound, upper_bound, var, unfold_const_bound);
    return true;
  } else if (v_product) {
    // only deal with 2*x
    Expr p_lower_bound;
    Expr p_upper_bound;
877
    Expr const_oper = ProductGetConstantPart(var);
878
    Expr non_const_oper = ProductGetNonConstantPart(var);
879
    auto v_var = non_const_oper.As<_Var_>();
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    if (v_var && var_intervals.count(v_var->name)) {
      Expr v_lower, v_upper;
      UnfoldBound(&v_lower, &v_upper, non_const_oper, unfold_const_bound);
      auto const_v = const_oper.get_constant();
      CHECK(v_lower.defined() && v_upper.defined());
      if (const_v > 0) {
        p_lower_bound = Product::Make({const_oper, v_lower});
        p_upper_bound = Product::Make({const_oper, v_upper});
      } else {
        p_lower_bound = Product::Make({const_oper, v_upper});
        p_upper_bound = Product::Make({const_oper, v_lower});
      }
      AddBaseAndSimplify(lower_bound, p_lower_bound);
      AddBaseAndSimplify(upper_bound, p_upper_bound);
      return true;
    }
  } else if (v_frac) {
    // only deal with x/2
    Expr p_lower_bound;
    Expr p_upper_bound;
    Expr non_const_oper = v_frac->a();
901 902
    Expr const_oper = v_frac->b();
    auto v_var = non_const_oper.As<_Var_>();
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
    if (v_var && var_intervals.count(v_var->name)) {
      Expr v_lower, v_upper;
      UnfoldBound(&v_lower, &v_upper, non_const_oper, unfold_const_bound);
      auto const_v = const_oper.get_constant();
      CHECK(v_lower.defined() && v_upper.defined());
      if (const_v > 0) {
        p_lower_bound = FracOp::Make(v_lower, const_oper);
        p_upper_bound = FracOp::Make(v_upper, const_oper);
      } else {
        p_lower_bound = FracOp::Make(v_upper, const_oper);
        p_upper_bound = FracOp::Make(v_lower, const_oper);
      }
      AddBaseAndSimplify(lower_bound, p_lower_bound);
      AddBaseAndSimplify(upper_bound, p_upper_bound);
      return true;
    }
  }
  return false;
}

923 924 925 926
bool CasSimplifyMutator::GetOperandBound(Expr* lower_bound,
                                         Expr* upper_bound,
                                         Expr v,
                                         bool unfold_const_bound) {
927 928 929 930 931 932 933 934 935 936 937 938 939 940
  // only support simple operand of int, var and var's product with int
  CHECK(lower_bound);
  CHECK(upper_bound);
  auto* v_int = v.As<IntImm>();
  if (v_int) {
    AddBaseAndSimplify(lower_bound, v);
    AddBaseAndSimplify(upper_bound, v);
    return true;
  } else if (GetVarBound(lower_bound, upper_bound, v, unfold_const_bound)) {
    return true;
  }
  return false;
}

941 942 943 944
bool CasSimplifyMutator::GetSumBound(Expr* lower_bound,
                                     Expr* upper_bound,
                                     Expr sum,
                                     bool unfold_const_bound) {
945 946 947 948 949 950 951 952 953
  // only support sum of int, var and var's product with int
  CHECK(lower_bound);
  CHECK(upper_bound);
  auto bound_sum = sum.As<Sum>();
  // CHECK(bound_sum);
  bool get_bound = true;
  Expr sum_lower_bound, sum_upper_bound;
  if (bound_sum) {
    for (Expr& v : bound_sum->operands()) {
954 955
      if (!GetOperandBound(
              &sum_lower_bound, &sum_upper_bound, v, unfold_const_bound)) {
956 957 958 959 960 961 962 963 964 965 966 967 968
        get_bound = false;
        break;
      }
    }
    if (get_bound) {
      *lower_bound = sum_lower_bound;
      *upper_bound = sum_upper_bound;
    }
    return get_bound;
  }
  return false;
}

969 970 971 972 973 974
bool CasSimplifyMutator::GetExprBound(Expr* lower_bound,
                                      Expr* upper_bound,
                                      Expr expr,
                                      bool unfold_const_bound) {
  // only support min's operands as sum, int or var or var's product with int or
  // min/max
975 976 977 978 979 980 981 982 983 984
  auto bound_sum = expr.As<Sum>();
  auto bound_min = expr.As<Min>();
  auto bound_max = expr.As<Max>();
  bool get_bound = true;
  if (bound_sum) {
    get_bound = GetSumBound(lower_bound, upper_bound, expr, unfold_const_bound);
  } else if (bound_min) {
    get_bound = GetMinBound(lower_bound, upper_bound, expr, unfold_const_bound);
  } else if (bound_max) {
    get_bound = GetMaxBound(lower_bound, upper_bound, expr, unfold_const_bound);
985 986
  } else if (!GetOperandBound(
                 lower_bound, upper_bound, expr, unfold_const_bound)) {
987 988 989 990 991
    return false;
  }
  return get_bound;
}

992 993 994 995 996 997
bool CasSimplifyMutator::GetMinBound(Expr* lower_bound,
                                     Expr* upper_bound,
                                     Expr min,
                                     bool unfold_const_bound) {
  // only support min's operands as sum, int or var or var's product with int or
  // min/max
998 999 1000 1001
  auto bound_min = min.As<Min>();
  CHECK(bound_min);
  bool get_bound = true;
  Expr a_lower_bound, a_upper_bound, b_lower_bound, b_upper_bound;
1002 1003 1004 1005 1006 1007
  get_bound =
      get_bound &&
      GetExprBound(
          &a_lower_bound, &a_upper_bound, bound_min->a(), unfold_const_bound) &&
      GetExprBound(
          &b_lower_bound, &b_upper_bound, bound_min->b(), unfold_const_bound);
1008
  if (get_bound) {
1009 1010 1011 1012
    *lower_bound =
        CasSimplify(Min::Make(a_lower_bound, b_lower_bound), var_intervals);
    *upper_bound =
        CasSimplify(Min::Make(a_upper_bound, b_upper_bound), var_intervals);
1013 1014 1015 1016
  }
  return get_bound;
}

1017 1018 1019 1020
bool CasSimplifyMutator::GetMaxBound(Expr* lower_bound,
                                     Expr* upper_bound,
                                     Expr max,
                                     bool unfold_const_bound) {
1021 1022 1023 1024
  auto bound_max = max.As<Max>();
  CHECK(bound_max);
  bool get_bound = true;
  Expr a_lower_bound, a_upper_bound, b_lower_bound, b_upper_bound;
1025 1026 1027 1028 1029 1030
  get_bound =
      get_bound &&
      GetExprBound(
          &a_lower_bound, &a_upper_bound, bound_max->a(), unfold_const_bound) &&
      GetExprBound(
          &b_lower_bound, &b_upper_bound, bound_max->b(), unfold_const_bound);
1031
  if (get_bound) {
1032 1033 1034 1035
    *lower_bound =
        CasSimplify(Max::Make(a_lower_bound, b_lower_bound), var_intervals);
    *upper_bound =
        CasSimplify(Max::Make(a_upper_bound, b_upper_bound), var_intervals);
1036 1037 1038 1039 1040 1041 1042 1043
  }
  return get_bound;
}

bool CasSimplifyMutator::SimplifySpecificSumMod(Expr* result, Expr a, Expr b) {
  // case1: (32+(-x))%33 = 32-x%33 (0<=x<=32)
  // case2: (x-32)%33 = x%33 - 32%33 (0<=x<=32)
  auto a_sum = a.As<Sum>();
1044
  auto b_i = b.As<IntImm>();
1045 1046 1047 1048 1049 1050
  if (!a_sum || !b_i) {
    return false;
  }
  // if 0 < b < 3, (3a+b) % 6 = (3a % 6) + (b % 6)
  if (a_sum->operands().size() == 2) {
    a_sum->operands()[0] = CasSimplify(a_sum->operands()[0], var_intervals);
1051 1052
    auto sum_a_prod = a_sum->operands()[0].As<Product>();
    auto sum_b_var = a_sum->operands()[1].As<_Var_>();
1053 1054
    if (sum_a_prod && sum_b_var && var_intervals.count(sum_b_var->name)) {
      auto sum_a_prod_b_int = sum_a_prod->operand(1).As<IntImm>();
1055 1056
      if (sum_a_prod_b_int)
        std::swap(sum_a_prod->operand(0), sum_a_prod->operand(1));
1057
      auto sum_a_prod_a_int = sum_a_prod->operand(0).As<IntImm>();
1058 1059 1060
      auto& interval = var_intervals.at(sum_b_var->name);
      int b_abs = std::abs(b_i->value);
      int sum_prod_a_abs = std::abs(sum_a_prod_a_int->value);
1061
      if (sum_a_prod_a_int && (b_abs % sum_prod_a_abs == 0)) {
1062 1063 1064 1065 1066 1067 1068 1069
        if (std::abs(interval.l) < sum_prod_a_abs &&
            std::abs(interval.r) < sum_prod_a_abs) {
          *result = CasSimplify(
              Sum::Make({CasSimplify(Mod::Make(a_sum->operands()[0], b),
                                     var_intervals),
                         CasSimplify(Mod::Make(a_sum->operands()[1], b),
                                     var_intervals)}),
              var_intervals);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
          return true;
        }
      }
    }
  }
#ifdef CINN_WITH_CUDA
  return false;
#else

  int const_value = 0;
  Expr lower_bound;
  Expr upper_bound;
  Expr rest_oper;
  bool can_simplify = true;
1084
  bool has_int = false;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
  // fold only the expr bound(may contains the var) and try to simplify the var
  Expr unfolded_lower_bound, unfolded_upper_bound;
  for (Expr& v : a_sum->operands()) {
    auto* v_int = v.As<IntImm>();
    if (v_int) {
      const_value += v_int->value;
      has_int = true;
    } else if (GetVarBound(&lower_bound, &upper_bound, v, false)) {
      AddBaseAndSimplify(&rest_oper, v);
    } else {
      can_simplify = false;
      break;
    }
  }
1099 1100 1101 1102 1103 1104
  can_simplify = can_simplify && has_int &&
                 std::abs(const_value) % b_i->value == b_i->value - 1 &&
                 lower_bound.defined() && upper_bound.defined() &&
                 rest_oper.defined();
  // further infer the vars' bound by the intervals infos, try to get the
  // constant
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
  if (can_simplify) {
    std::vector<Expr> bounds = {lower_bound, upper_bound};
    for (int i = 0; i < bounds.size(); ++i) {
      Expr bound = bounds[i];
      Expr bound_l, bound_r;
      GetExprBound(&bound_l, &bound_r, bound);
      if (i == 0 && bound_l.defined()) {
        lower_bound = bound_l;
      }
      if (i == 1 && bound_r.defined()) {
        upper_bound = bound_r;
      }
    }
  } else {
    return false;
  }
  // case1: (32+(-x))%33 = 32-x%33 (0<=x<=32)
  // case2: (x-32)%33 = x%33 - 32%33 (0<=x<=32)
  can_simplify = can_simplify && lower_bound.is_constant();
1124 1125
  bool case1 = can_simplify && const_value >= 0 &&
               lower_bound.get_constant() >= -const_value &&
1126
               upper_bound.is_constant() && upper_bound.get_constant() <= 0;
1127 1128
  bool case2 = can_simplify && const_value <= 0 &&
               lower_bound.get_constant() >= 0 && upper_bound.is_constant() &&
1129 1130 1131 1132 1133 1134 1135 1136 1137
               upper_bound.get_constant() <= -const_value;
  can_simplify = can_simplify && (case1 || case2);
  if (can_simplify) {
    Expr const_expr;
    if (const_value < 0) {
      const_expr = make_const(b->type(), const_value % b_i->value);
    } else {
      const_expr = make_const(b->type(), const_value % b_i->value);
    }
1138 1139 1140 1141
    *result = CasSimplify(
        Sum::Make(
            {const_expr, CasSimplify(Mod::Make(rest_oper, b), var_intervals)}),
        var_intervals);
1142 1143 1144 1145 1146 1147 1148
    return true;
  }
  return false;
#endif
}

// Return if the var's interval is nonnegative.
1149 1150 1151
inline bool IsVarNonnegative(
    const absl::flat_hash_map<std::string, CasInterval>& var_intervals,
    const std::string& var_name) {
1152 1153 1154
  return var_intervals.count(var_name) && var_intervals.at(var_name).l >= 0;
}

1155 1156
// Return if the var is binded with thread or block in cuda(which implies it is
// non-negative).
1157
inline bool IsVarBinded(const std::string& var_name) {
1158 1159
  return utils::Startswith(var_name, "threadIdx") ||
         utils::Startswith(var_name, "blockIdx");
1160 1161 1162 1163 1164 1165 1166 1167 1168
}

/**
 * Return if exprs are still all nonnegative vars.
 * @param all_nonnegative_var is previous exprs all nonnegative vars.
 * @param arg_var the pointer of this var.
 * @param var_intervals intervals of each var.
 * @return if exprs are still all nonnegative vars.
 */
1169 1170 1171 1172 1173 1174 1175 1176
inline bool IsVarAllNonnegative(
    bool all_nonnegative_var,
    _Var_* arg_var,
    const absl::flat_hash_map<std::string, CasInterval>& var_intervals) {
  // All exprs all nonnegative vars if previous exprs are nonnegative
  // vars(all_nonnegative_var == true) and this expr is a var (arg_var !=
  // nullptr) and (this var's interval is nonnegative or this var is binded to
  // thread or block in cuda).
1177
  return all_nonnegative_var && arg_var &&
1178 1179
         (IsVarNonnegative(var_intervals, arg_var->name) ||
          IsVarBinded(arg_var->name));
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
}

Expr CasSimplifyMutator::SimplifyMod(Expr u) {
  VLOG(4) << "SimplifyMod:" << u;
  auto* node = u.As<Mod>();
  CHECK(node);

  auto a = CasSimplify(node->a(), var_intervals);
  auto b = CasSimplify(node->b(), var_intervals);

1190
  auto* a_i = a.As<IntImm>();
1191
  auto* a_product = a.As<Product>();
1192 1193 1194 1195
  auto* a_sum = a.As<Sum>();
  auto* a_var = a.As<_Var_>();
  auto* a_mod = a.As<Mod>();
  auto* a_add = a.As<Add>();
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

  auto* b_i = b.As<IntImm>();

  // 7 % 3
  if (a_i && b_i) {
    return make_const(a_i->type(), a_i->value % b_i->value);
  }

  // x % 1 = 0
  if (b_i && b_i->value == 1) return make_const(b_i->type(), 0);

  // handle cases:
  // (x * 6) % 2 = 0
  // (x * 2) % 6 = (x % 3) * 2
  if (b_i && a_product && b_i->value > 0) {
    for (int i = 0; i < a_product->operands().size(); i++) {
      auto a_op_i = a_product->operand(i);
      if (a_op_i.As<IntImm>() && a_op_i.As<IntImm>()->value > 0) {
        int a_op_int = a_op_i.As<IntImm>()->value;
        // case: (x * 6) % 2 = 0
        if (a_op_int % b_i->value == 0) return make_const(a_product->type(), 0);
        // case: (x * y * 2) % 6 = ((x * y) % 3) * 2
        if (b_i->value % a_op_int == 0) {
1219
          int new_b = b_i->value / a_op_int;
1220 1221
          std::vector<Expr> a_operands = a_product->operands();
          a_operands.erase(a_operands.begin() + i);
1222 1223 1224
          return Product::Make(
              {SimplifyMod(Mod::Make(Product::Make(a_operands), Expr(new_b))),
               Expr(a_op_int)});
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        }
      }
    }
  }

  // (x % 16) % 4 = x % 4
  if (a_mod && b_i) {
    VLOG(4) << "Simplify sequential mod";
    auto* a_b_i = a_mod->b().As<IntImm>();
    if (a_b_i->value != 0 && a_b_i->value % b_i->value == 0) {
      auto e = SimplifyMod(Mod::Make(a_mod->a(), b_i));
      VLOG(4) << "Reduce Mod from " << u << " to " << e;
      return e;
    }
  }

  // 0 % x = 0, 1 % x = 1
  if (a_i && (a_i->value == 0 || a_i->value == 1)) return a;

  if (b_i && a_var && var_intervals.count(a_var->name)) {
    auto& interval = var_intervals.at(a_var->name);
1246
    int b_abs = std::abs(b_i->value);
1247 1248 1249
    // x\in[1, 3] % 4 = x
    if (std::abs(interval.l) < b_abs && std::abs(interval.r) < b_abs) return a;
    // [3,3] % 3 = 0
1250 1251
    if (interval.l == interval.r && interval.l % b_abs == 0)
      return make_const(b_i->type(), 0);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
  }

  if (a_product && b_i) {
    if (IsDivisible(a_product, b_i->value)) {
      return make_const(Int(32), 0);
    }
  }

  // (4*x + k*y)%2 = (k*y) %2
  // (2x+y+z) % 2 = (y+z) % 2
  if (a_sum && b_i) {
    VLOG(4) << "A SUM ";
    std::vector<Expr> sum_args;
    for (auto& v : a_sum->operands()) {
      if (!IsDivisible(v, b_i->value)) {
        VLOG(4) << v;
        sum_args.push_back(v);
      }
    }

    if (sum_args.empty()) return make_const(b_i->type(), 0);
    // handle the case: (2x+y+z) % 2 = (y+z) % 2 when y>=0 and z>=0
    if (sum_args.size() == 1) {
      return SimplifyMod(Mod::Make(sum_args[0], b));
    } else if (sum_args.size() < a_sum->operands().size()) {
      bool all_nonnegative_var = true;
      bool all_nonnegative_int = true;
      for (int i = 0; i < sum_args.size(); i++) {
1280 1281 1282 1283 1284 1285
        auto* arg_var = sum_args[i].As<_Var_>();
        all_nonnegative_var =
            IsVarAllNonnegative(all_nonnegative_var, arg_var, var_intervals);
        auto* arg_int = sum_args[i].As<IntImm>();
        all_nonnegative_int =
            all_nonnegative_int && arg_int && arg_int->value >= 0;
1286 1287
      }
      VLOG(4) << all_nonnegative_var << " " << all_nonnegative_int;
1288 1289
      if (all_nonnegative_var)
        return SimplifyMod(Mod::Make(Sum::Make(sum_args), b));
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
      if (all_nonnegative_int) {
        int sum_value = 0;
        for (auto& i : sum_args) sum_value += i.As<IntImm>()->value;
        return make_const(a_sum->type(), sum_value % b_i->value);
      }
      return SimplifyMod(Mod::Make(Sum::Make(sum_args), b));
    } else if (sum_args.size() == a_sum->operands().size()) {
      if (b_i->value > 0 && !var_intervals.empty()) {
        // case1: (32+(-x))%33 = 32-x%33 (0<=x<=32)
        // case2: (x-32))%33 = x%33 - 32%33 (0<=x<=32)
        Expr result;
        if (SimplifySpecificSumMod(&result, a, b)) {
          return result;
        }
      }
      return Mod::Make(a, b);
    }
  }

  return Mod::Make(a, b);
}

Expr CasSimplifyMutator::SimplifyMinAndMax(Expr u) {
  // simplify min/max
  auto* u_max = u.As<Max>();
  auto* u_min = u.As<Min>();
  if (u_max) {
1317 1318
    Expr a = CasSimplify(u_max->a(), var_intervals);
    Expr b = CasSimplify(u_max->b(), var_intervals);
1319 1320 1321 1322 1323 1324 1325 1326
    bool is_a_const = a.is_constant();
    bool is_b_const = b.is_constant();
    if (is_a_const && is_b_const) {
      return a.get_constant() >= b.get_constant() ? a : b;
    }
    Expr lower_bound, upper_bound;
    Expr const_operand, non_const_operand;
    if (is_a_const) {
1327
      const_operand = a;
1328 1329 1330
      non_const_operand = b;
    }
    if (is_b_const) {
1331
      const_operand = b;
1332 1333 1334 1335 1336 1337
      non_const_operand = a;
    }
    if (const_operand.defined() && non_const_operand.defined()) {
      auto const_size = const_operand.get_constant();
      // unfold var with bounds
      if (GetExprBound(&lower_bound, &upper_bound, non_const_operand, true)) {
1338 1339 1340 1341
        // if non_const_operand's lower_bound is larger than const_operand, then
        // non_const_operand must be larger than const_operand
        if (lower_bound.is_constant() &&
            const_size <= lower_bound.get_constant()) {
1342 1343
          return non_const_operand;
        }
1344 1345 1346 1347
        // if non_const_operand's upper_bound is smaller than a, then
        // const_operand must be larger than non_const_operand
        if (upper_bound.is_constant() &&
            const_size >= upper_bound.get_constant()) {
1348 1349 1350 1351 1352
          return const_operand;
        }
      }
      // not unfold var for var may be eliminated in the caculation
      if (GetExprBound(&lower_bound, &upper_bound, non_const_operand, false)) {
1353 1354
        // if non_const_operand's lower_bound is larger than const_operand, then
        // non_const_operand must be larger than const_operand
1355 1356
        lower_bound = CasSimplify(lower_bound, var_intervals);
        upper_bound = CasSimplify(upper_bound, var_intervals);
1357 1358
        if (lower_bound.is_constant() &&
            const_size <= lower_bound.get_constant()) {
1359 1360
          return non_const_operand;
        }
1361 1362 1363 1364
        // if non_const_operand's upper_bound is smaller than a, then
        // const_operand must be larger than non_const_operand
        if (upper_bound.is_constant() &&
            const_size >= upper_bound.get_constant()) {
1365 1366 1367 1368 1369 1370 1371 1372
          return const_operand;
        }
      }
    }
    return ir::Max::Make(a, b);
  }

  if (u_min) {
1373 1374
    Expr a = CasSimplify(u_min->a(), var_intervals);
    Expr b = CasSimplify(u_min->b(), var_intervals);
1375 1376 1377 1378 1379 1380 1381 1382
    bool is_a_const = a.is_constant();
    bool is_b_const = b.is_constant();
    if (is_a_const && is_b_const) {
      return a.get_constant() <= b.get_constant() ? a : b;
    }
    Expr lower_bound, upper_bound;
    Expr const_operand, non_const_operand;
    if (is_a_const) {
1383
      const_operand = a;
1384 1385 1386
      non_const_operand = b;
    }
    if (is_b_const) {
1387
      const_operand = b;
1388 1389 1390 1391 1392
      non_const_operand = a;
    }
    if (const_operand.defined() && non_const_operand.defined()) {
      auto const_size = const_operand.get_constant();
      if (GetExprBound(&lower_bound, &upper_bound, non_const_operand, true)) {
1393 1394 1395 1396
        // if non_const_operand's lower_bound is larger than const_operand, then
        // non_const_operand must be larger than const_operand
        if (lower_bound.is_constant() &&
            const_size <= lower_bound.get_constant()) {
1397 1398
          return const_operand;
        }
1399 1400 1401 1402
        // if non_const_operand's upper_bound is smaller than a, then
        // const_operand must be larger than non_const_operand
        if (upper_bound.is_constant() &&
            const_size >= upper_bound.get_constant()) {
1403 1404 1405 1406
          return non_const_operand;
        }
      }
      if (GetExprBound(&lower_bound, &upper_bound, non_const_operand, false)) {
1407 1408 1409 1410
        // if non_const_operand's lower_bound is larger than const_operand, then
        // non_const_operand must be larger than const_operand
        if (lower_bound.is_constant() &&
            const_size <= lower_bound.get_constant()) {
1411 1412
          return const_operand;
        }
1413 1414 1415 1416
        // if non_const_operand's upper_bound is smaller than a, then
        // const_operand must be larger than non_const_operand
        if (upper_bound.is_constant() &&
            const_size >= upper_bound.get_constant()) {
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
          return non_const_operand;
        }
      }
    }
    return ir::Min::Make(a, b);
  }
  return u;
}

Expr CasSimplifyMutator::SimplifyCmp(Expr u) {
  Expr a = operator()(u->operand(0));
  Expr b = operator()(u->operand(1));

  if (a.is_constant() && b.is_constant()) {
    switch (u->node_type()) {
      case ir::IrNodeTy::LT:
        return Expr(a.get_constant() < b.get_constant());
      case ir::IrNodeTy::LE:
        return Expr(a.get_constant() <= b.get_constant());
      case ir::IrNodeTy::GT:
        return Expr(a.get_constant() > b.get_constant());
      case ir::IrNodeTy::GE:
        return Expr(a.get_constant() >= b.get_constant());
      case ir::IrNodeTy::EQ:
        return Expr(a.get_constant() == b.get_constant());
      case ir::IrNodeTy::NE:
        return Expr(a.get_constant() != b.get_constant());
    }
  }

  return u;
}

/**
1451 1452 1453 1454
 * deal with index's div-mod add simplification, tempory solution, not cover all
 * situations. case 1: (m / n) * n + m % n = m (m, n's type is int) case 2: (m /
 * n1) * n3 + (n2 * m) % n3 = n2 * m if n3 = n1 * n2 (m, n1, n2, n3's type is
 * int)
1455 1456 1457 1458 1459 1460 1461
 */
Expr CasSimplifyMutator::SimplifySpecificSum(Expr tmp) {
  auto sum = tmp.As<Sum>();
  if (!sum) {
    return tmp;
  }
  if (sum->operands().size() == 1U) return sum->operand(0);
1462 1463 1464
  Expr left = sum->operand(0);
  Expr right = sum->operand(1);
  auto left_mod = left.As<Mod>();
1465
  auto right_mod = right.As<Mod>();
1466
  auto left_mul = left.As<Product>();
1467
  auto right_mul = right.As<Product>();
1468
  auto left_div = left.As<FracOp>();
1469 1470 1471
  auto right_div = right.As<FracOp>();
  // normalize to left mul and right mod
  if (right_mul && left_mod) {
1472
    left_mul = right_mul;
1473 1474 1475 1476
    right_mod = left_mod;
  }
  // normalize to left div and right mod
  if (right_div && left_mod) {
1477
    left_div = right_div;
1478 1479 1480 1481 1482 1483
    right_mod = left_mod;
  }
  if (!right_mod || (!left_mul && !left_div)) {
    return tmp;
  }
  CHECK_GE(right_mod->operands().size(), 2U);
1484
  Expr mod_left = right_mod->operand(0);
1485 1486 1487 1488 1489 1490
  Expr mod_right = right_mod->operand(1);
  if (!mod_left->type().is_integer() || !mod_right->type().is_integer()) {
    return tmp;
  }
  if (left_mul) {
    // case 1: (m / n) * n + m % n = m (m, n's type is int)
1491 1492
    // case 2: (m / n1) * n3 + (n2 * m) % n3 = n2 * m if n3 = n1 * n2 (m, n1,
    // n2, n3's type is int)
1493
    CHECK_GE(left_mul->operands().size(), 2U);
1494
    Expr mul_left = left_mul->operand(0);
1495 1496 1497
    Expr mul_right = left_mul->operand(1);

    // handle the case1 : n * (m / n)  + m % n = (m / n) * n + m % n = m
1498 1499
    // handle the case2 : n3 * (m / n1) + (n2 * m) % n3 = (m / n1) * n3 + (n2 *
    // m) % n3 = n2 * m if n3 = n1 * n2
1500
    if (MathEqual(mod_right, mul_left)) {
1501
      mul_left = left_mul->operand(1);
1502 1503 1504 1505 1506 1507 1508 1509 1510
      mul_right = left_mul->operand(0);
    } else if (!MathEqual(mod_right, mul_right)) {
      return tmp;
    }
    auto div = mul_left.As<FracOp>();
    if (!div) {
      return tmp;
    }
    CHECK_GE(div->operands().size(), 2U);
1511
    Expr div_left = div->operand(0);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    Expr div_right = div->operand(1);
    if (!div_left->type().is_integer() || !div_right->type().is_integer()) {
      return tmp;
    }
    if (MathEqual(div_left * mod_right, mod_left * div_right)) {
      tmp = mod_left;
      for (int i = 2; i < sum->operands().size(); i++) {
        tmp = tmp + sum->operand(i);
      }
      return tmp;
    }
  }
  return tmp;
}

Expr CasSimplifyMutator::operator()(Expr u) {
  if (u.As<Min>() || u.As<Max>()) {
    return SimplifyMinAndMax(u);
  }

  u = detail::SumOrProductGetSingleElementsRec(u);

  if (u.is_constant() || u.As<_Var_>()) return u;

  if (u.As<FracOp>()) {
1537
    u = SimplifyFracOp(u);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
    auto tmp = FurtherSimplifyFracWithInterval(u, var_intervals);
    if (!tmp.same_as(u)) return operator()(tmp);
    return u;
  }

  if (u.As<Product>()) {
    return detail::SumOrProductGetSingleElementsRec(SimplifyProduct(u));
  }

  if (u.As<Sum>()) {
    auto tmp = detail::SumOrProductGetSingleElementsRec(SimplifySum(u));
1549 1550 1551 1552 1553
    // deal with index's div-mod add simplification, tempory solution, not cover
    // all situations. case 1: (m / n) * n + m % n = m (m, n's type is int) case
    // 2: (m / n1) * n3 + (n2 * m) % n3 = n2 * m if n3 = n1 * n2 (m, n1, n2,
    // n3's type is int) case 3: m / n2 + (n1 * m) % n3 = n1 * m if n3 = n1 * n2
    // (m, n1, n2, n3's type is int)
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
    return SimplifySpecificSum(tmp);
  }

  if (u.As<Mod>()) {
    return detail::SumOrProductGetSingleElementsRec(SimplifyMod(u));
  }

  if (u.is_cmp()) {
    return SimplifyCmp(u);
  }

  switch (u.node_type()) {
    case ir::IrNodeTy::And:
    case ir::IrNodeTy::Or:
    case ir::IrNodeTy::Not:
      return SimplifyCond(u);
    default:
      break;
  }

  return u;
}

bool CASasSymbol(Expr expr) {
1578 1579
  auto* load_n = expr.As<Load>();
  auto* var_n = expr.As<_Var_>();
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
  auto* broadcast_n = expr.As<Broadcast>();

  return load_n || var_n || broadcast_n;
}

Expr ConvertCinnToCAS(Expr expr) {
  VLOG(7) << "Begin ConvertCinnToCAS " << expr;
  Expr copied = optim::IRCopy(expr);
  struct Mutator : public ir::IRMutator<ir::Expr*> {
    void operator()(Expr* expr) { Visit(expr); }
    void Visit(Expr* expr) { ir::IRMutator<>::Visit(expr, expr); }

   private:
    void Visit(const Add* op, Expr* expr) override {
      auto a = op->a();
      auto b = op->b();

      Visit(&a);
      Visit(&b);

      bool is_zero_a = a.is_constant() && a.get_constant() == 0;
      bool is_zero_b = b.is_constant() && b.get_constant() == 0;
      if (is_zero_a) {
        *expr = b;
        return;
      } else if (is_zero_b) {
        *expr = a;
        return;
      }
      *expr = Sum::Make({a, b});
    }
    void Visit(const Mul* op, Expr* expr) override {
      auto a = op->a();
      auto b = op->b();

      Visit(&a);
      Visit(&b);

      if (a.is_constant() && a.get_constant() == 0) {
        *expr = make_const(a->type(), 0);
        return;
      }

      if (a.is_constant() && a.get_constant() == 1) {
        *expr = b;
        return;
      }

      if (b.is_constant() && b.get_constant() == 0) {
        *expr = make_const(b->type(), 0);
        return;
      }

      if (b.is_constant() && b.get_constant() == 1) {
        *expr = a;
        return;
      }

      *expr = Product::Make({a, b});
    }

    void Visit(const Sub* op, Expr* expr) override {
      auto a = op->a();
      auto b = op->b();

      Visit(&a);
      Visit(&b);

      bool is_zero_a = a.is_constant() && a.get_constant() == 0;
      bool is_zero_b = b.is_constant() && b.get_constant() == 0;
      if (is_zero_a) {
        *expr = Product::Make({make_const(b->type(), -1), b});
        return;
      } else if (is_zero_b) {
        *expr = a;
        return;
      }

1658
      b = Product::Make({make_const(b->type(), -1), b});
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
      *expr = Sum::Make({a, b});
    }

    void Visit(const Div* op, Expr* expr) override {
      auto a = op->a();
      auto b = op->b();

      Visit(&a);
      Visit(&b);

      CHECK(!is_zero(b)) << "Dividend should not be zero";

      if (a.is_constant() && a.get_constant() == 0) {
        *expr = make_const(a->type(), 0);
        return;
      }

      if (b.is_constant() && b.get_constant() == 1) {
        *expr = a;
        return;
      }

      // int division, NOTE that 3/2 = 1, 3./2 = 1.5
      *expr = FracOp::Make(a, b);
    }

    void Visit(const Minus* op, Expr* expr) override {
      auto a = op->v();

      Visit(&a);

      if (a.is_constant()) {
        auto value = a.get_constant();
        if (value == 0) {
          *expr = make_const(a->type(), 0);
          return;
        }
      }

      *expr = Product::Make({make_const(a->type(), -1), a});
    }
  };

  Mutator()(&copied);
  return copied;
}

/**
1707 1708 1709 1710
 * @brief Given an expr, visit it. If there is an ir::Min and its operands are 1
 * constant value and 1 inconstant value, return the constant min value. For
 * example, if a < min(5, b), then we get a < 5 and a < b. Using a < 5 to
 * simplify the condition ensures correctness, though not sufficient.
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
 */
Expr ReplaceMinToConstant(Expr expr) {
  Expr copied = optim::IRCopy(expr);
  struct Mutator : public ir::IRMutator<ir::Expr*> {
    void operator()(Expr* expr) { Visit(expr); }
    void Visit(Expr* expr) { ir::IRMutator<>::Visit(expr, expr); }

   private:
    void Visit(const Min* op, Expr* expr) override {
      auto a = op->a();
      auto b = op->b();

      Visit(&a);
      Visit(&b);

      auto min_a = op->a();
      auto min_b = op->b();
      if (min_a.is_constant() && !min_b.is_constant()) {
        CHECK(min_a->type().is_integer());
        *expr = optim::IRCopy(min_a);
      } else if (min_b.is_constant() && !min_a.is_constant()) {
        CHECK(min_b->type().is_integer());
        *expr = optim::IRCopy(min_b);
      }
    }
  };
  Mutator()(&copied);
  return copied;
}

/**
1742 1743
 * @brief Given an expr, visit it. If there is an ir::Max and its operands are 1
 * constant value and 1 inconstant value, return the constant max value.
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
 */
Expr ReplaceMaxToConstant(Expr expr) {
  Expr copied = optim::IRCopy(expr);
  struct Mutator : public ir::IRMutator<ir::Expr*> {
    void operator()(Expr* expr) { Visit(expr); }
    void Visit(Expr* expr) { ir::IRMutator<>::Visit(expr, expr); }

   private:
    void Visit(const Max* op, Expr* expr) override {
      auto a = op->a();
      auto b = op->b();

      Visit(&a);
      Visit(&b);

      auto max_a = op->a();
      auto max_b = op->b();
      if (max_a.is_constant() && !max_b.is_constant()) {
        CHECK(max_a->type().is_integer());
        *expr = optim::IRCopy(max_a);
      } else if (max_b.is_constant() && !max_a.is_constant()) {
        CHECK(max_b->type().is_integer());
        *expr = optim::IRCopy(max_b);
      }
    }
  };
  Mutator()(&copied);
  return copied;
}

Expr ConvertCasToCinn(Expr expr) {
  VLOG(7) << "Begin ConvertCasToCinn : " << expr;
  Expr copied = optim::IRCopy(expr);

  struct Mutator : ir::IRMutator<Expr*> {
    void operator()(Expr* expr) { Visit(expr); }
    void Visit(Expr* expr) { ir::IRMutator<>::Visit(expr, expr); }

   private:
    void Visit(const Product* op, Expr* expr) override {
      std::vector<Expr> operands;
      auto* node = expr->As<Product>();
      for (auto& v : node->operands()) {
        auto c = v;
        Mutator()(&c);
        operands.push_back(c);
      }

      CHECK(!operands.empty());
      if (operands.size() == 1) {
        *expr = operands[0];
      } else if (operands.size() == 2) {
        *expr = Mul::Make(operands[0], operands[1]);
      } else {
        auto a = operands[0];
        auto b = Product::Make(EraseFront(operands));
        Mutator()(&b);
        *expr = Mul::Make(a, b);
      }

      // process the Mul
      Visit(expr);
    }

    void Visit(const Sum* op, Expr* expr) override {
      std::vector<Expr> operands;
      auto* node = expr->As<Sum>();
      for (auto& v : node->operands()) {
        auto c = v;
        Mutator()(&c);
        operands.push_back(c);
      }

      CHECK(!operands.empty());
      if (operands.size() == 1) {
        *expr = operands[0];
      } else if (operands.size() == 2) {
        *expr = Add::Make(operands[0], operands[1]);
      } else {
        auto a = operands[0];
        auto b = Sum::Make(EraseFront(operands));
        Mutator()(&b);
        *expr = Add::Make(a, b);
      }

      // process the sum
      Visit(expr);
    }

    void Visit(const FracOp* op, Expr* expr) override {
      auto a = op->a();
      auto b = op->b();

      Visit(&a);
      Visit(&b);

      CHECK(!is_zero(b)) << "Dividend should not be zero";
      *expr = Div::Make(a, b);
      Visit(expr);
    }

    // a + -1*b -> a-b
    void Visit(const Add* op, Expr* expr) override {
      auto a = op->a();
      auto b = op->b();

      Visit(&a);
      Visit(&b);

      auto* bp = b.As<ir::Mul>();
      if (bp && bp->a().is_constant() && bp->a().get_constant() == -1.f) {
        *expr = Sub::Make(a, bp->b());
      } else {
        *expr = Add::Make(a, b);
      }
    }
  };

  Mutator()(&copied);
  return copied;
}

bool IsExprCasCompatible(Expr expr) {
  auto teller = [](const Expr* expr) {
1868 1869
    return expr->As<Add>() || expr->As<Sub>() || expr->As<Mul>() ||
           expr->As<Div>();
1870 1871 1872 1873 1874 1875 1876 1877 1878
  };
  return ir::CollectIRNodes(expr, teller).empty();
}

// Partially divide a by b. e.g. (2x+y)/2 => x + y/2
Expr DividePartially(Sum* a, int b) {
  std::vector<Expr> external_sum_args, sum_args;

  for (auto& item : a->operands()) {
1879 1880
    if (item.As<Product>() && (IsDivisible(item.As<Product>(), b) ||
                               IsDivisible(b, item.As<Product>()))) {
1881 1882
      external_sum_args.push_back(Divide(item.As<Product>(), b));
    } else if (item.As<IntImm>() && IsDivisible(item.As<IntImm>()->value, b)) {
1883 1884
      external_sum_args.push_back(
          make_const(item.type(), item.As<IntImm>()->value / b));
1885 1886 1887 1888 1889 1890 1891
    } else {
      sum_args.push_back(item);
    }
  }

  if (!external_sum_args.empty()) {
    if (sum_args.empty()) return Sum::Make(external_sum_args);
1892 1893 1894
    Expr internal_sum =
        sum_args.size() == 1 ? sum_args[0] : Sum::Make(sum_args);
    Expr new_frac = FracOp::Make(internal_sum, make_const(a->type(), b));
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
    return Sum::Make(Concat(external_sum_args, {new_frac}));
  }
  return Expr(a);
}

bool IsMonotonical(Expr u, Var v) {
  auto* up = u.As<Product>();
  auto* uv = u.As<_Var_>();

  if (uv && uv->name == v->name) return true;
  if (up) {
    for (auto& item : up->operands()) {
      if (IsMonotonical(item, v)) return true;
    }
  }
  return false;
}

1913 1914
// Should be called after SimplifyFracOp. If y is integer and $y\in \[0, 3\]$,
// then y/4=0
1915
Expr CasSimplifyMutator::FurtherSimplifyFracWithInterval(
1916 1917
    Expr expr,
    const absl::flat_hash_map<std::string, CasInterval>& var_intervals) {
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
  auto* node = expr.As<FracOp>();
  if (!node) return expr;
  auto a = CasSimplify(node->a(), var_intervals);
  auto b = CasSimplify(node->b(), var_intervals);

  auto* ai = a.As<IntImm>();
  auto* bi = b.As<IntImm>();
  auto* av = a.As<_Var_>();
  auto* bv = b.As<_Var_>();
  auto* ap = a.As<Product>();
  // case: y / 4, y\in[0,3]
  if (bi) {
    if (av) {
      auto it = var_intervals.find(av->name);
1932 1933
      if (it != var_intervals.end() &&
          std::abs(it->second.r) < std::abs(bi->value) &&
1934 1935 1936 1937 1938 1939 1940
          std::abs(it->second.l) < std::abs(bi->value))
        return make_const(a.type(), 0);
    }
  }
  // case: 1/y, y\in(2, 100)
  if (ai) {
    if (bv) {
1941
      auto it = var_intervals.find(bv->name);
1942 1943 1944 1945 1946
      auto ai_abs = std::abs(ai->value);
      if (it != var_intervals.end()) {
        VLOG(7) << "found " << bv->name << " " << it->second << " "
                << " ai " << ai_abs;
      }
1947 1948
      if (it != var_intervals.end() && std::abs(it->second.r) > ai_abs &&
          std::abs(it->second.l) > ai_abs) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
        return make_const(a.type(), 0);
      }
    }
  }
  return expr;
}

Expr SimplifyConstantFrac(FracOp* node) {
  auto* ai = node->a().As<ir::IntImm>();
  auto* au = node->a().As<ir::UIntImm>();
  auto* af = node->a().As<ir::FloatImm>();

  if (ai) {
    auto* bi = node->b().As<ir::IntImm>();
    CHECK(bi);
    return make_const(ai->type(), ai->value / bi->value);
  }

  if (au) {
    auto* bu = node->b().As<ir::UIntImm>();
    CHECK(bu);
    return make_const(au->type(), au->value / bu->value);
  }

  if (af) {
    auto* bf = node->b().As<ir::FloatImm>();
    CHECK(af);
    return make_const(af->type(), af->value / bf->value);
  }
  CINN_NOT_IMPLEMENTED
  return Expr();
}

Expr CasSimplifyMutator::SimplifyFracOp(Expr expr) {
  VLOG(7) << "CAS simplify Frac " << expr;
  auto* node = expr.As<FracOp>();
1985 1986
  auto a = CasSimplify(node->a(), var_intervals);
  auto b = CasSimplify(node->b(), var_intervals);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  // update frac op node
  expr = ir::FracOp::Make(a, b);
  node = expr.As<FracOp>();

  auto* ap = a.As<Product>();
  auto* bp = b.As<Product>();
  auto* as = a.As<Sum>();
  auto* bi = b.As<IntImm>();
  auto* ai = a.As<IntImm>();
  auto* af = a.As<FloatImm>();
  auto* bf = b.As<FloatImm>();
  auto* av = a.As<_Var_>();
  auto* bv = b.As<_Var_>();

  // case 1
  // integer constant division: 64/3
  if (node->is_constant()) {
    if (int_compute_) {
      return SimplifyConstantFrac(node);
    } else {
      return SimplifyRationalNumber(expr);
    }
  }

  // case 2
  // sum/x or product/x is divisible
  if (bi) {
2015
    auto* a_sum = a.As<Sum>();
2016 2017 2018 2019
    auto* a_product = a.As<Product>();
    // divisible
    if (a_sum && IsDivisible(a_sum, bi->value)) return Divide(a_sum, bi->value);
    if (a_product) {
2020 2021
      if (IsDivisible(a_product, bi->value) ||
          IsDivisible(bi->value, a_product)) {
2022 2023 2024 2025 2026 2027 2028 2029 2030
        return Divide(a_product, bi->value);
      } else {
        return FracOp::Make(a, b);
      }
    }

    // if 0 < b < 3, (3a+b) / 6 = (3a / 6) + (b / 6)
    if (a_sum && a_sum->operands().size() == 2) {
      a_sum->operands()[0] = CasSimplify(a_sum->operands()[0], var_intervals);
2031 2032
      auto sum_a_prod = a_sum->operands()[0].As<Product>();
      auto sum_b_var = a_sum->operands()[1].As<_Var_>();
2033 2034
      if (sum_a_prod && sum_b_var && var_intervals.count(sum_b_var->name)) {
        auto sum_a_prod_b_int = sum_a_prod->operand(1).As<IntImm>();
2035 2036
        if (sum_a_prod_b_int)
          std::swap(sum_a_prod->operand(0), sum_a_prod->operand(1));
2037
        auto sum_a_prod_a_int = sum_a_prod->operand(0).As<IntImm>();
2038 2039 2040
        auto& interval = var_intervals.at(sum_b_var->name);
        int b_abs = std::abs(bi->value);
        int sum_prod_a_abs = std::abs(sum_a_prod_a_int->value);
2041
        if (sum_a_prod_a_int && (b_abs % sum_prod_a_abs == 0)) {
2042 2043 2044 2045 2046 2047 2048 2049
          if (std::abs(interval.l) < sum_prod_a_abs &&
              std::abs(interval.r) < sum_prod_a_abs) {
            return CasSimplify(
                Sum::Make({CasSimplify(FracOp::Make(a_sum->operands()[0], b),
                                       var_intervals),
                           CasSimplify(FracOp::Make(a_sum->operands()[1], b),
                                       var_intervals)}),
                var_intervals);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
          }
        }
      }
    }

    // not divisible
    /*
    if (a_sum) {
      auto expr = DividePartially(a_sum, bi->value);
      return expr;
    }
     */
  }

  // cinn_min/cinn_max(a, b)/2 = cinn_min/cinn_max(a/2, b/2)
  if ((bi && bi->value > 0) || (bf && bf->value > 0)) {
    auto cmp_min = a.As<Min>();
    auto cmp_max = a.As<Max>();
    if (cmp_min) {
2069 2070 2071 2072
      return {CasSimplify(
          Min::Make(CasSimplify(FracOp::Make(cmp_min->a(), b), var_intervals),
                    CasSimplify(FracOp::Make(cmp_min->b(), b), var_intervals)),
          var_intervals)};
2073 2074
    }
    if (cmp_max) {
2075 2076 2077 2078
      return {CasSimplify(
          Max::Make(CasSimplify(FracOp::Make(cmp_max->a(), b), var_intervals),
                    CasSimplify(FracOp::Make(cmp_max->b(), b), var_intervals)),
          var_intervals)};
2079 2080 2081 2082 2083 2084
    }
  }

  if (av && bi) {
    if (var_intervals.count(av->name)) {
      auto& interval = var_intervals.at(av->name);
2085 2086 2087
      int b_abs = std::abs(bi->value);
      if (std::abs(interval.l) < b_abs && std::abs(interval.r) < b_abs)
        return make_const(bi->type(), 0);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
      return FracOp::Make(a, b);
    }
  }

  // (32x+y)/32 = x + y/32
  if (as && bi) {
    std::vector<Expr> external_sum_args;
    std::vector<Expr> internal_sum_args;
    for (auto& e : as->operands()) {
      if (IsDivisible(e, bi->value)) {
2098 2099 2100 2101 2102 2103 2104
        if (e.As<Sum>())
          external_sum_args.push_back(Divide(e.As<Sum>(), bi->value));
        if (e.As<IntImm>())
          external_sum_args.push_back(
              make_const(bi->type(), e.As<IntImm>()->value / bi->value));
        if (e.As<Product>())
          external_sum_args.push_back(Divide(e.As<Product>(), bi->value));
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
      } else {
        internal_sum_args.push_back(e);
      }
    }

    Expr external_sum, internal_sum;
    if (!external_sum_args.empty()) {
      if (external_sum_args.size() == 1)
        external_sum = external_sum_args.front();
      else
        external_sum = Sum::Make(external_sum_args);
    }

    if (!internal_sum_args.empty()) {
      internal_sum = FracOp::Make(Sum::Make(internal_sum_args), b);
    }

    if (external_sum.defined() && internal_sum.defined()) {
2123 2124
      return CasSimplify(Sum::Make({external_sum, internal_sum}),
                         var_intervals);
2125 2126 2127 2128 2129 2130 2131
    }
    if (external_sum.defined()) return CasSimplify(external_sum, var_intervals);
    return internal_sum;
  }

  // solve the case: 2abc / b
  // Both avs and bvs should be sorted first.
2132 2133
  auto reduce_product_div_product = [](const std::vector<Expr>& avs,
                                       const std::vector<Expr>& bvs) {
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
    std::vector<Expr> avs1, bvs1;
    int i = 0;
    int j = 0;

    ExprPosCmp cmp;

    while (i < avs.size() && j < bvs.size()) {
      auto& a = avs[i];
      auto& b = bvs[j];
      if (a.is_constant() && b.is_constant()) {
        auto* ai = a.As<IntImm>();
        auto* bi = b.As<IntImm>();
        auto* af = a.As<FloatImm>();
        auto* bf = b.As<FloatImm>();
        if (ai) {
          CHECK(bi);
2150
          int g = gcd(ai->value, bi->value);
2151 2152 2153 2154 2155 2156
          int a_d = ai->value / g;
          int b_d = bi->value / g;

          avs1.push_back(make_const(a.type(), a_d));
          if (b_d != 1) bvs1.push_back(make_const(b.type(), b_d));
        } else if (af || bf) {
2157
          double value = af->value / bf->value;
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
          const auto& ftype = af ? af->type() : bf->type();
          avs1.push_back(make_const(ftype, value));
        } else {
          avs1.push_back(a);
          bvs1.push_back(b);
        }

        // CHECK(!af) << a << " " << b;
        i++;
        j++;
      } else if (avs[i] == bvs[j]) {
        i++;
        j++;
      } else {
        // <
        if (cmp(avs[i], bvs[j])) {
          avs1.push_back(avs[i++]);
        } else {
          bvs1.push_back(bvs[j++]);
        }
      }
    }
    while (i < avs.size()) {
      avs1.push_back(avs[i++]);
    }
    while (j < bvs.size()) {
      bvs1.push_back(bvs[j++]);
    }
    if (avs1.empty()) return make_const(avs[0].type(), 1);
    if (bvs1.empty()) return Product::Make(avs1);

    return FracOp::Make(Product::Make(avs1), Product::Make(bvs1));
  };

  {
    // TODO : fix in future.
    // std::vector<Expr> a_args, b_args;
    // if (ap)
    //   a_args = ap->operands();
    // else
    //   a_args.push_back(a);
    // if (bp)
    //   b_args = bp->operands();
    // else
    //   b_args.push_back(b);
    // return reduce_product_div_product(a_args, b_args);
  }

  // x / x
  if (a.type().is_int() && b.type().is_int() && av && bv) {
    if (a == b) return make_const(a.type(), 1);
  }

  if (node->a().same_as(a) && node->b().same_as(b)) return expr;
  return FracOp::Make(a, b);
}

Expr CasSimplifyMutator::SimplifyCond(Expr u) {
  switch (u->node_type()) {
      // -------------------------- NOT -----------------------------
    case ir::IrNodeTy::Not: {
      auto* node = u.As<ir::Not>();
2220
      Expr v = operator()(node->v());
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
      switch (v.node_type()) {
          // Not 1 = (1 == 0)
        case ir::IrNodeTy::IntImm:
          return Expr(v.As<IntImm>()->value == 0);
          // Not Not v = v
        case ir::IrNodeTy::Not:
          return v;
          // Not <= is >
        case ir::IrNodeTy::LE:
          return ir::GT::Make(v->operand(0), v->operand(1));
          // Not < is >=
        case ir::IrNodeTy::LT:
          return ir::GE::Make(v->operand(0), v->operand(1));
          // Not >= is <
        case ir::IrNodeTy::GE:
          return ir::LT::Make(v->operand(0), v->operand(1));
          // Not > is <=
        case ir::IrNodeTy::GT:
          return ir::LE::Make(v->operand(0), v->operand(1));
        default:
          return ir::Not::Make(v);
      }
    } break;
      // -------------------------- AND OR -----------------------------
    case ir::IrNodeTy::And:
    case ir::IrNodeTy::Or: {
      Expr a = operator()(u->operand(0));
      Expr b = operator()(u->operand(1));
      if (a.is_constant() || b.is_constant()) {
        if (u.As<ir::And>()) {
          // 1 && b is b
          if (a.As<ir::UIntImm>()) {
            return a.As<ir::UIntImm>()->value ? b : Expr(false);
          }
          // a && 1 is a
          if (b.As<ir::UIntImm>()) {
            return b.As<ir::UIntImm>()->value ? a : Expr(false);
          }
          return ir::And::Make(a, b);
        }
        if (u.As<ir::Or>()) {
          // 1 || b is 1
          if (a.As<ir::UIntImm>()) {
            return a.As<ir::UIntImm>()->value ? a : b;
          }
          // a || 1 is 1
          if (b.As<ir::UIntImm>()) {
            return b.As<ir::UIntImm>()->value ? b : a;
          }
        }
        return ir::Or::Make(a, b);
      }

      return u;
    }

    default:
      return u;
  }
}

}  // namespace detail

2284 2285 2286
Expr CasSimplify(
    Expr u,
    const absl::flat_hash_map<std::string, CasInterval>& var_intervals) {
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
  return detail::CasSimplifyMutator(var_intervals)(u);
}

Expr SolveInequality(Expr inequality, Var val) {
  auto copied = AutoSimplify(inequality);

  auto* le_n = copied.As<ir::LE>();
  auto* lt_n = copied.As<ir::LT>();
  auto* gt_n = copied.As<ir::GT>();
  auto* ge_n = copied.As<ir::GE>();

  Expr a, b;

#define __(x__)   \
  if (x__) {      \
    a = x__->a(); \
    b = x__->b(); \
  }
  __(le_n)
  __(lt_n)
  __(gt_n)
  __(ge_n)
#undef __
  Expr all = AutoSimplify(a - b);

  // if (common::IsPureMath(a) && common::IsPureMath(b)) {
  if (true) {
    auto _res_positive_ = common::Solve(a, b, val);  // NOLINT
2315 2316
    auto& res = std::get<0>(_res_positive_);
    auto& positive = std::get<1>(_res_positive_);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
    // Simplify it with CAS to avoid random result from GiNac.
    res = AutoSimplify(res);
    res = common::cast(res, val->type());

    if (le_n) {
      if (positive) return ir::LE::Make(val, res);
      return ir::GE::Make(val, res);
    }
    if (lt_n) {
      if (positive) return ir::LT::Make(val, res);
      return ir::GT::Make(val, res);
    }
    if (ge_n) {
      if (positive) return ir::GE::Make(val, res);
      return ir::LE::Make(val, res);
    }
    if (gt_n) {
      if (positive) return ir::GT::Make(val, res);
      return ir::LT::Make(val, res);
    }
  } else {
    return AutoSimplify(inequality);
  }
  return Expr();
}

}  // namespace common
}  // namespace cinn