math_op_patch.py 5.3 KB
Newer Older
Y
Yang Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ..framework import Variable, unique_name
Y
Fix CI  
Yang Yu 已提交
16
from layer_function_generator import OpProtoHolder
Y
Yang Yu 已提交
17 18 19 20 21

__all__ = ['monkey_patch_variable']


def monkey_patch_variable():
Y
Yang Yu 已提交
22
    def unique_tmp_name():
Y
Yang Yu 已提交
23 24 25 26 27 28 29 30 31 32 33
        return unique_name("tmp")

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

    def create_tensor(block, value, dtype, shape):
        value = float(value)
Y
Yang Yu 已提交
34
        tmp_name = unique_tmp_name()
Y
Yang Yu 已提交
35 36 37 38 39 40 41 42 43
        var = block.create_var(name=tmp_name, shape=shape, dtype=dtype)
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
            attrs={'dtype': var.dtype,
                   'shape': shape,
                   'value': value})
        return var

Y
Yang Yu 已提交
44 45 46
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
47 48 49
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
Y
Yang Yu 已提交
50
        tmp_name = unique_tmp_name()
Y
Yang Yu 已提交
51 52 53 54 55 56 57 58 59 60 61
        var = ref_var.block.create_var(name=tmp_name, dtype=dtype)
        ref_var.block.append_op(
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
            attrs={'shape': ref_var.shape,
                   'value': value})
        return var

    def astype(self, dtype):
        """
Y
Yang Yu 已提交
62
        Cast a variable to a specified data type.
Y
Yang Yu 已提交
63 64 65 66 67 68 69 70
        NOTE: The variable must be a Tensor
        Args:
            self(Variable): The source variable
            dtype: The target dtype

        Returns:
            Variable with new dtype
        """
Y
Yang Yu 已提交
71
        tmp_name = unique_tmp_name()
Y
Yang Yu 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        out = self.block.create_var(name=tmp_name, dtype=dtype)
        self.block.append_op(
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
        return out

    def _elemwise_method_creator_(method_name, op_type, reverse=False):
        def __impl__(self, other_var):
            lhs_dtype = safe_get_dtype(self)

            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
                            self.block,
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
                    # add fill_op to self.block
                    other_var = create_scalar(
                        self.block, value=other_var, dtype=lhs_dtype)

            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

Y
Yang Yu 已提交
114
            tmp_name = unique_tmp_name()
Y
Yang Yu 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            out = self.block.create_var(name=tmp_name, dtype=lhs_dtype)
            self.block.append_op(
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
                outputs={'Out': out})
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
            other_var(Variable|float|int): right hand variable 

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

    # inject methods
    for method_name, op_type, reverse in (
        ("__add__", "elementwise_add", False),
            # a+b == b+a. Do not need to reverse explicitly
        ("__radd__", "elementwise_add", False),
        ("__sub__", "elementwise_sub", False),
        ("__rsub__", "elementwise_sub", True),
        ("__mul__", "elementwise_mul", False),
            # a*b == b*a. Do not need to reverse explicitly
        ("__rmul__", "elementwise_mul", False),
        ("__div__", "elementwise_div", False),
        ("__rdiv__", "elementwise_div", True)):
        setattr(Variable, method_name,
                _elemwise_method_creator_(method_name, op_type, reverse))

    Variable.astype = astype