multiclass_nms3_kernel.cc 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/multiclass_nms3_kernel.h"

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/gpc.h"

namespace phi {

using phi::funcs::gpc_free_polygon;
using phi::funcs::gpc_polygon_clip;

template <class T>
class Point_ {
 public:
  // default constructor
  Point_() {}
  Point_(T _x, T _y) {}
  Point_(const Point_& pt) {}

  Point_& operator=(const Point_& pt);
  // conversion to another data type
  // template<typename _T> operator Point_<_T>() const;
  // conversion to the old-style C structures
  // operator Vec<T, 2>() const;

  // checks whether the point is inside the specified rectangle
  // bool inside(const Rect_<T>& r) const;
  T x;  //!< x coordinate of the point
  T y;  //!< y coordinate of the point
};

template <class T>
void Array2PointVec(const T* box,
                    const size_t box_size,
                    std::vector<Point_<T>>* vec) {
  size_t pts_num = box_size / 2;
  (*vec).resize(pts_num);
  for (size_t i = 0; i < pts_num; i++) {
    (*vec).at(i).x = box[2 * i];
    (*vec).at(i).y = box[2 * i + 1];
  }
}

template <class T>
void Array2Poly(const T* box,
                const size_t box_size,
                phi::funcs::gpc_polygon* poly) {
  size_t pts_num = box_size / 2;
  (*poly).num_contours = 1;
  (*poly).hole = reinterpret_cast<int*>(malloc(sizeof(int)));
  (*poly).hole[0] = 0;
  (*poly).contour =
      (phi::funcs::gpc_vertex_list*)malloc(sizeof(phi::funcs::gpc_vertex_list));
  (*poly).contour->num_vertices = pts_num;
  (*poly).contour->vertex =
      (phi::funcs::gpc_vertex*)malloc(sizeof(phi::funcs::gpc_vertex) * pts_num);
  for (size_t i = 0; i < pts_num; ++i) {
    (*poly).contour->vertex[i].x = box[2 * i];
    (*poly).contour->vertex[i].y = box[2 * i + 1];
  }
}

template <class T>
void PointVec2Poly(const std::vector<Point_<T>>& vec,
                   phi::funcs::gpc_polygon* poly) {
  int pts_num = vec.size();
  (*poly).num_contours = 1;
  (*poly).hole = reinterpret_cast<int*>(malloc(sizeof(int)));
  (*poly).hole[0] = 0;
  (*poly).contour =
      (phi::funcs::gpc_vertex_list*)malloc(sizeof(phi::funcs::gpc_vertex_list));
  (*poly).contour->num_vertices = pts_num;
  (*poly).contour->vertex =
      (phi::funcs::gpc_vertex*)malloc(sizeof(phi::funcs::gpc_vertex) * pts_num);
  for (size_t i = 0; i < pts_num; ++i) {
    (*poly).contour->vertex[i].x = vec[i].x;
    (*poly).contour->vertex[i].y = vec[i].y;
  }
}

template <class T>
void Poly2PointVec(const phi::funcs::gpc_vertex_list& contour,
                   std::vector<Point_<T>>* vec) {
  int pts_num = contour.num_vertices;
  (*vec).resize(pts_num);
  for (int i = 0; i < pts_num; i++) {
    (*vec).at(i).x = contour.vertex[i].x;
    (*vec).at(i).y = contour.vertex[i].y;
  }
}

template <class T>
T GetContourArea(const std::vector<Point_<T>>& vec) {
  size_t pts_num = vec.size();
  if (pts_num < 3) return T(0.);
  T area = T(0.);
  for (size_t i = 0; i < pts_num; ++i) {
    area += vec[i].x * vec[(i + 1) % pts_num].y -
            vec[i].y * vec[(i + 1) % pts_num].x;
  }
  return std::fabs(area / 2.0);
}

template <class T>
T PolyArea(const T* box, const size_t box_size, const bool normalized) {
  // If coordinate values are is invalid
  // if area size <= 0,  return 0.
  std::vector<Point_<T>> vec;
  Array2PointVec<T>(box, box_size, &vec);
  return GetContourArea<T>(vec);
}

template <class T>
T PolyOverlapArea(const T* box1,
                  const T* box2,
                  const size_t box_size,
                  const bool normalized) {
  phi::funcs::gpc_polygon poly1;
  phi::funcs::gpc_polygon poly2;
  Array2Poly<T>(box1, box_size, &poly1);
  Array2Poly<T>(box2, box_size, &poly2);
  phi::funcs::gpc_polygon respoly;
  phi::funcs::gpc_op op = phi::funcs::GPC_INT;
  phi::funcs::gpc_polygon_clip(op, &poly2, &poly1, &respoly);

  T inter_area = T(0.);
  int contour_num = respoly.num_contours;
  for (int i = 0; i < contour_num; ++i) {
    std::vector<Point_<T>> resvec;
    Poly2PointVec<T>(respoly.contour[i], &resvec);
    // inter_area += std::fabs(cv::contourArea(resvec)) + 0.5f *
    // (cv::arcLength(resvec, true));
    inter_area += GetContourArea<T>(resvec);
  }

  phi::funcs::gpc_free_polygon(&poly1);
  phi::funcs::gpc_free_polygon(&poly2);
  phi::funcs::gpc_free_polygon(&respoly);
  return inter_area;
}

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores,
    const T threshold,
    int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(),
                   sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
    sorted_indices->resize(top_k);
  }
}

template <class T>
static inline T BBoxArea(const T* box, const bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1,
                               const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
    T inter_w = inter_xmax - inter_xmin + norm;
    T inter_h = inter_ymax - inter_ymin + norm;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <class T>
T PolyIoU(const T* box1,
          const T* box2,
          const size_t box_size,
          const bool normalized) {
  T bbox1_area = PolyArea<T>(box1, box_size, normalized);
  T bbox2_area = PolyArea<T>(box2, box_size, normalized);
  T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
  if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
    // If coordinate values are invalid
    // if area size <= 0,  return 0.
    return T(0.);
  } else {
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

inline std::vector<size_t> GetNmsLodFromRoisNum(const DenseTensor* rois_num) {
  std::vector<size_t> rois_lod;
  auto* rois_num_data = rois_num->data<int>();
  rois_lod.push_back(static_cast<size_t>(0));
  for (int i = 0; i < rois_num->numel(); ++i) {
    rois_lod.push_back(rois_lod.back() + static_cast<size_t>(rois_num_data[i]));
  }
  return rois_lod;
}

template <typename T, typename Context>
void SliceOneClass(const Context& ctx,
                   const DenseTensor& items,
                   const int class_id,
                   DenseTensor* one_class_item) {
  T* item_data = ctx.template Alloc<T>(one_class_item);
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int class_num = items.dims()[1];
  if (items.dims().size() == 3) {
    int item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
  }
}

template <typename T>
void NMSFast(const DenseTensor& bbox,
             const DenseTensor& scores,
             const T score_threshold,
             const T nms_threshold,
             const T eta,
             const int64_t top_k,
             std::vector<int>* selected_indices,
             const bool normalized) {
  // The total boxes for each instance.
  int64_t num_boxes = bbox.dims()[0];
  // 4: [xmin ymin xmax ymax]
  // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
  // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
  int64_t box_size = bbox.dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
  std::vector<std::pair<T, int>> sorted_indices;
  GetMaxScoreIndex<T>(scores_data, score_threshold, top_k, &sorted_indices);

  selected_indices->clear();
  T adaptive_threshold = nms_threshold;
  const T* bbox_data = bbox.data<T>();

  while (sorted_indices.size() != 0) {
    const int idx = sorted_indices.front().second;
    bool keep = true;
    for (size_t k = 0; k < selected_indices->size(); ++k) {
      if (keep) {
        const int kept_idx = (*selected_indices)[k];
        T overlap = T(0.);
        // 4: [xmin ymin xmax ymax]
        if (box_size == 4) {
          overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size,
                                      normalized);
        }
        // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
        if (box_size == 8 || box_size == 16 || box_size == 24 ||
            box_size == 32) {
          overlap = PolyIoU<T>(bbox_data + idx * box_size,
                               bbox_data + kept_idx * box_size,
                               box_size,
                               normalized);
        }
        keep = overlap <= adaptive_threshold;
      } else {
        break;
      }
    }
    if (keep) {
      selected_indices->push_back(idx);
    }
    sorted_indices.erase(sorted_indices.begin());
    if (keep && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
}

template <typename T, typename Context>
void MultiClassNMS(const Context& ctx,
                   const DenseTensor& scores,
                   const DenseTensor& bboxes,
                   const int scores_size,
                   float scorethreshold,
                   int nms_top_k,
                   int keep_top_k,
                   float nmsthreshold,
                   bool normalized,
                   float nmseta,
                   int background_label,
                   std::map<int, std::vector<int>>* indices,
                   int* num_nmsed_out) {
  T nms_threshold = static_cast<T>(nmsthreshold);
  T nms_eta = static_cast<T>(nmseta);
  T score_threshold = static_cast<T>(scorethreshold);

  int num_det = 0;

  int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
  DenseTensor bbox_slice, score_slice;
  for (int64_t c = 0; c < class_num; ++c) {
    if (c == background_label) continue;
    if (scores_size == 3) {
      score_slice = scores.Slice(c, c + 1);
      bbox_slice = bboxes;
    } else {
      score_slice.Resize({scores.dims()[0], 1});
      bbox_slice.Resize({scores.dims()[0], 4});
      SliceOneClass<T, Context>(ctx, scores, c, &score_slice);
      SliceOneClass<T, Context>(ctx, bboxes, c, &bbox_slice);
    }
    NMSFast<T>(bbox_slice,
               score_slice,
               score_threshold,
               nms_threshold,
               nms_eta,
               nms_top_k,
               &((*indices)[c]),
               normalized);
    if (scores_size == 2) {
      std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
    }
    num_det += (*indices)[c].size();
  }

  *num_nmsed_out = num_det;
  const T* scores_data = scores.data<T>();
  if (keep_top_k > -1 && num_det > keep_top_k) {
    const T* sdata;
    std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
    for (const auto& it : *indices) {
      int label = it.first;
      if (scores_size == 3) {
        sdata = scores_data + label * scores.dims()[1];
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        SliceOneClass<T, Context>(ctx, scores, label, &score_slice);
        sdata = score_slice.data<T>();
      }
      const std::vector<int>& label_indices = it.second;
      for (size_t j = 0; j < label_indices.size(); ++j) {
        int idx = label_indices[j];
        score_index_pairs.push_back(
            std::make_pair(sdata[idx], std::make_pair(label, idx)));
      }
    }
    // Keep top k results per image.
    std::stable_sort(score_index_pairs.begin(),
                     score_index_pairs.end(),
                     SortScorePairDescend<std::pair<int, int>>);
    score_index_pairs.resize(keep_top_k);

    // Store the new indices.
    std::map<int, std::vector<int>> new_indices;
    for (size_t j = 0; j < score_index_pairs.size(); ++j) {
      int label = score_index_pairs[j].second.first;
      int idx = score_index_pairs[j].second.second;
      new_indices[label].push_back(idx);
    }
    if (scores_size == 2) {
      for (const auto& it : new_indices) {
        int label = it.first;
        std::stable_sort(new_indices[label].begin(), new_indices[label].end());
      }
    }
    new_indices.swap(*indices);
    *num_nmsed_out = keep_top_k;
  }
}

template <typename T, typename Context>
void MultiClassOutput(const Context& ctx,
                      const DenseTensor& scores,
                      const DenseTensor& bboxes,
                      const std::map<int, std::vector<int>>& selected_indices,
                      const int scores_size,
                      DenseTensor* out,
                      int* oindices = nullptr,
                      const int offset = 0) {
  int64_t class_num = scores.dims()[1];
  int64_t predict_dim = scores.dims()[1];
  int64_t box_size = bboxes.dims()[1];
  if (scores_size == 2) {
    box_size = bboxes.dims()[2];
  }
  int64_t out_dim = box_size + 2;
  auto* scores_data = scores.data<T>();
  auto* bboxes_data = bboxes.data<T>();
  auto* odata = out->data<T>();
  const T* sdata;
  DenseTensor bbox;
  bbox.Resize({scores.dims()[0], box_size});
  int count = 0;
  for (const auto& it : selected_indices) {
    int label = it.first;
    const std::vector<int>& indices = it.second;
    if (scores_size == 2) {
      SliceOneClass<T, Context>(ctx, bboxes, label, &bbox);
    } else {
      sdata = scores_data + label * predict_dim;
    }

    for (size_t j = 0; j < indices.size(); ++j) {
      int idx = indices[j];
      odata[count * out_dim] = label;  // label
      const T* bdata;
      if (scores_size == 3) {
        bdata = bboxes_data + idx * box_size;
        odata[count * out_dim + 1] = sdata[idx];  // score
        if (oindices != nullptr) {
          oindices[count] = offset + idx;
        }
      } else {
        bdata = bbox.data<T>() + idx * box_size;
        odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
        if (oindices != nullptr) {
          oindices[count] = offset + idx * class_num + label;
        }
      }
      // xmin, ymin, xmax, ymax or multi-points coordinates
      std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
      count++;
    }
  }
}

template <typename T, typename Context>
void MultiClassNMSKernel(const Context& ctx,
                         const DenseTensor& bboxes,
                         const DenseTensor& scores,
                         const paddle::optional<DenseTensor>& rois_num,
                         float score_threshold,
                         int nms_top_k,
                         int keep_top_k,
                         float nms_threshold,
                         bool normalized,
                         float nms_eta,
                         int background_label,
                         DenseTensor* out,
                         DenseTensor* index,
                         DenseTensor* nms_rois_num) {
  bool return_index = index != nullptr;
  bool has_roisnum = rois_num.get_ptr() != nullptr;
499
  auto score_dims = phi::vectorize<int>(scores.dims());
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
  auto score_size = score_dims.size();

  std::vector<std::map<int, std::vector<int>>> all_indices;
  std::vector<size_t> batch_starts = {0};
  int64_t batch_size = score_dims[0];
  int64_t box_dim = bboxes.dims()[2];
  int64_t out_dim = box_dim + 2;
  int num_nmsed_out = 0;
  DenseTensor boxes_slice, scores_slice;
  int n = 0;
  if (has_roisnum) {
    n = score_size == 3 ? batch_size : rois_num.get_ptr()->numel();
  } else {
    n = score_size == 3 ? batch_size : bboxes.lod().back().size() - 1;
  }
  for (int i = 0; i < n; ++i) {
    std::map<int, std::vector<int>> indices;
    if (score_size == 3) {
      scores_slice = scores.Slice(i, i + 1);
      scores_slice.Resize({score_dims[1], score_dims[2]});
      boxes_slice = bboxes.Slice(i, i + 1);
      boxes_slice.Resize({score_dims[2], box_dim});
    } else {
      std::vector<size_t> boxes_lod;
      if (has_roisnum) {
        boxes_lod = GetNmsLodFromRoisNum(rois_num.get_ptr());
      } else {
        boxes_lod = bboxes.lod().back();
      }
      if (boxes_lod[i] == boxes_lod[i + 1]) {
        all_indices.push_back(indices);
        batch_starts.push_back(batch_starts.back());
        continue;
      }
      scores_slice = scores.Slice(boxes_lod[i], boxes_lod[i + 1]);
      boxes_slice = bboxes.Slice(boxes_lod[i], boxes_lod[i + 1]);
    }
    MultiClassNMS<T, Context>(ctx,
                              scores_slice,
                              boxes_slice,
                              score_size,
                              score_threshold,
                              nms_top_k,
                              keep_top_k,
                              nms_threshold,
                              normalized,
                              nms_eta,
                              background_label,
                              &indices,
                              &num_nmsed_out);
    all_indices.push_back(indices);
    batch_starts.push_back(batch_starts.back() + num_nmsed_out);
  }

  int num_kept = batch_starts.back();
  if (num_kept == 0) {
    if (return_index) {
      out->Resize({0, out_dim});
      ctx.template Alloc<T>(out);
      index->Resize({0, 1});
      ctx.template Alloc<int>(index);
    } else {
      out->Resize({1, 1});
      T* od = ctx.template Alloc<T>(out);
      od[0] = -1;
      batch_starts = {0, 1};
    }
  } else {
    out->Resize({num_kept, out_dim});
    ctx.template Alloc<T>(out);
    int offset = 0;
    int* oindices = nullptr;
    for (int i = 0; i < n; ++i) {
      if (score_size == 3) {
        scores_slice = scores.Slice(i, i + 1);
        boxes_slice = bboxes.Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice.Resize({score_dims[2], box_dim});
        if (return_index) {
          offset = i * score_dims[2];
        }
      } else {
        std::vector<size_t> boxes_lod;
        if (has_roisnum) {
          boxes_lod = GetNmsLodFromRoisNum(rois_num.get_ptr());
        } else {
          boxes_lod = bboxes.lod().back();
        }
        if (boxes_lod[i] == boxes_lod[i + 1]) continue;
        scores_slice = scores.Slice(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = bboxes.Slice(boxes_lod[i], boxes_lod[i + 1]);
        if (return_index) {
          offset = boxes_lod[i] * score_dims[1];
        }
      }

      int64_t s = batch_starts[i];
      int64_t e = batch_starts[i + 1];
      if (e > s) {
        DenseTensor nout = out->Slice(s, e);
        if (return_index) {
          index->Resize({num_kept, 1});
          int* output_idx = ctx.template Alloc<int>(index);
          oindices = output_idx + s;
        }
        MultiClassOutput<T, Context>(ctx,
                                     scores_slice,
                                     boxes_slice,
                                     all_indices[i],
                                     score_dims.size(),
                                     &nout,
                                     oindices,
                                     offset);
      }
    }
  }
  if (nms_rois_num != nullptr) {
    nms_rois_num->Resize({n});
    ctx.template Alloc<int>(nms_rois_num);
    int* num_data = nms_rois_num->data<int>();
    for (int i = 1; i <= n; i++) {
      num_data[i - 1] = batch_starts[i] - batch_starts[i - 1];
    }
    nms_rois_num->Resize({n});
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
    multiclass_nms3, CPU, ALL_LAYOUT, phi::MultiClassNMSKernel, float, double) {
}