heterxpu_trainer.cc 21.0 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
15 16 17
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_XPU) && \
    (defined PADDLE_WITH_PSLIB)
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
18
#include "paddle/fluid/platform/cuda_device_guard.h"
T
Thunderbrook 已提交
19
#endif
T
Thunderbrook 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
namespace paddle {
namespace framework {

void HeterXpuTrainer::Initialize(const TrainerDesc& trainer_desc,
                                 Dataset* dataset) {
  srand((unsigned)time(NULL));
  param_ = trainer_desc.downpour_param();
  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }
  scale_datanorm_ = trainer_desc.scale_datanorm();
  int place_num = trainer_desc.worker_places_size();
  for (int i = 0; i < place_num; ++i) {
    int num = trainer_desc.worker_places(i);
T
Thunderbrook 已提交
39
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
40 41 42 43 44 45 46 47 48 49
    platform::CUDAPlace place = platform::CUDAPlace(num);
    platform::CUDADeviceGuard guard(place.device);
    cudaStream_t stream;
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream));
    copy_streams_.push_back(stream);
    places_.push_back(place);
    cudaEvent_t event;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
    events_.push_back(event);
T
Thunderbrook 已提交
50 51 52 53 54
#endif
#ifdef PADDLE_WITH_XPU
    platform::XPUPlace place = platform::XPUPlace(num);
    places_.push_back(place);
#endif
T
Thunderbrook 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  }
  // thread_num_ = trainer_desc.thread_num();
  // SetDataset(dataset);

  // dump_fields_path_ = trainer_desc.dump_fields_path();
  // dump_converter_ = trainer_desc.dump_converter();
  // need_dump_field_ = false;
  // if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
  //   need_dump_field_ = true;
  // }
  // if (need_dump_field_) {
  //   auto &file_list = dataset->GetFileList();
  //   if (file_list.size() == 0) {
  //     need_dump_field_ = false;
  //   }
  // }
  // mpi_rank_ = trainer_desc.mpi_rank();
  // mpi_size_ = trainer_desc.mpi_size();
  // dump_file_num_ = trainer_desc.dump_file_num();
  // const std::vector<paddle::framework::DataFeed *> readers =
  //     dataset->GetReaders();
  // thread_num_ = readers.size();
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
  running_ = true;
  VLOG(3) << "going to initialize pull dense worker";
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
  VLOG(3) << "initialize pull dense worker";
  SetDebug(trainer_desc.debug());
  fleet_ptr_ = FleetWrapper::GetInstance();
  heter_ptr_ = HeterWrapper::GetInstance();
  RegisterServiceHandler();
  // for (int i = 0; i < trainer_desc.worker_places_size(); ++i) {
  //   int num = trainer_desc.worker_places(i);
  //   platform::CUDAPlace place = platform::CUDAPlace(num);
  //   platform::CUDADeviceGuard guard(place.device);
  //   cudaStream_t stream;
  //   PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream));
  //   copy_streams_.push_back(stream);
  //   places_.push_back(place);
  // }
  trainer_desc_ = trainer_desc;
}

void HeterXpuTrainer::CreateThreadParam(const ProgramDesc& program, int num) {
  auto place = places_[num];
  Scope* scope = place_scopes_[num];
T
Thunderbrook 已提交
106
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
107 108 109 110
  auto stream = copy_streams_[num];
  auto event = events_[num];
  auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
  platform::CUDADeviceGuard guard(dev_id);
T
Thunderbrook 已提交
111 112 113 114 115 116
#endif

#ifdef PADDLE_WITH_XPU
  xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device);
#endif

T
Thunderbrook 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  auto& block = program.Block(0);
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto name = var->Name();
      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      auto* ptr = scope->Var(name);
      InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();

#define HeterMemcpyFunc(cpp_type, proto_type)                           \
  do {                                                                  \
    if (root_tensor->type() == proto_type) {                            \
      HeterMemCpy<cpp_type>(thread_tensor, root_tensor, place, stream); \
    }                                                                   \
  } while (0)
T
Thunderbrook 已提交
133 134 135 136 137 138 139 140

#define HeterMemcpyXpuFunc(cpp_type, proto_type)                \
  do {                                                          \
    if (root_tensor->type() == proto_type) {                    \
      HeterMemCpy<cpp_type>(thread_tensor, root_tensor, place); \
    }                                                           \
  } while (0)
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
141
      _ForEachDataType_(HeterMemcpyFunc);
T
Thunderbrook 已提交
142 143 144 145
#endif
#ifdef PADDLE_WITH_XPU
      _ForEachDataType_(HeterMemcpyXpuFunc);
#endif
T
Thunderbrook 已提交
146 147
    }
  }
T
Thunderbrook 已提交
148
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
149 150
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, stream));
  cudaEventSynchronize(event);
T
Thunderbrook 已提交
151
#endif
T
Thunderbrook 已提交
152 153
}

T
Thunderbrook 已提交
154
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
template <typename T>
void HeterXpuTrainer::HeterMemCpy(LoDTensor* thread_tensor,
                                  LoDTensor* root_tensor,
                                  const paddle::platform::Place& thread_place,
                                  cudaStream_t stream) {
  T* thread_ptr =
      thread_tensor->mutable_data<T>(root_tensor->dims(), thread_place);
  T* root_ptr = root_tensor->data<T>();
  if (platform::is_cpu_place(root_tensor->place())) {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
                 platform::CPUPlace(), root_ptr,
                 sizeof(T) * root_tensor->numel(), stream);
  } else {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
                 BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()),
                 root_ptr, sizeof(T) * root_tensor->numel(), stream);
  }
}
T
Thunderbrook 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
#endif

#ifdef PADDLE_WITH_XPU
template <typename T>
void HeterXpuTrainer::HeterMemCpy(LoDTensor* thread_tensor,
                                  LoDTensor* root_tensor,
                                  const paddle::platform::Place& thread_place) {
  T* thread_ptr =
      thread_tensor->mutable_data<T>(root_tensor->dims(), thread_place);
  T* root_ptr = root_tensor->data<T>();
  if (platform::is_cpu_place(root_tensor->place())) {
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, thread_place), thread_ptr,
                 platform::CPUPlace(), root_ptr,
                 sizeof(T) * root_tensor->numel());
  } else {
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, thread_place), thread_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, root_tensor->place()),
                 root_ptr, sizeof(T) * root_tensor->numel());
  }
}
#endif
T
Thunderbrook 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

void HeterXpuTrainer::DumpWork(int tid) {}

void HeterXpuTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                     const platform::Place& place) {
  CacheProgram(main_program);
  place_ = place;
  auto& profiler = paddle::ps::CostProfiler::instance();
  profiler.register_profiler("xpu_service_run_task");
  profiler.register_profiler("xpu_service_deserial");
  profiler.register_profiler("xpu_service_launch_kernel");
  profiler.register_profiler("xpu_service_wait");
}

void HeterXpuTrainer::InitOtherEnv(const ProgramDesc& main_program) {
  auto& block = main_program.Block(0);
  pull_dense_worker_->SetRootScope(root_scope_);
  pull_dense_worker_->CreatePinVar();
  for (size_t i = 0; i < places_.size(); ++i) {
    Scope* scope = &(root_scope_->NewScope());
    // for (auto &var : block.AllVars()) {
    //   if (var->Persistable()) {
    //     auto *ptr = scope->Var(var->Name());
    //     InitializeVariable(ptr, var->GetType());
    //   }
    // }
    place_scopes_.push_back(scope);
    CreateThreadParam(main_program, i);
    pull_dense_worker_->AddThreadScope(scope);
    pull_dense_worker_->AddPlace(places_[i]);
T
Thunderbrook 已提交
224
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
225
    pull_dense_worker_->AddStream(copy_streams_[i]);
T
Thunderbrook 已提交
226
#endif
T
Thunderbrook 已提交
227 228
  }
  pull_dense_worker_->Start();
T
Thunderbrook 已提交
229
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
230 231 232
  for (auto& stream : copy_streams_) {
    cudaStreamSynchronize(stream);
  }
T
Thunderbrook 已提交
233
#endif
T
Thunderbrook 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
  xpu_begin_op_index_ = xpu_end_op_index_ = -1;
  xpu_begin_op_index_ = trainer_desc_.xpu_start_idx();
  xpu_end_op_index_ = trainer_desc_.xpu_end_idx();
  VLOG(0) << "xpu begin: " << xpu_begin_op_index_
          << " xpu end: " << xpu_end_op_index_;
  // CHECK(xpu_begin_op_index_ == 0);
  // CHECK(xpu_end_op_index_ = ops_.size() - 1);
  //// init pool
  for (size_t i = 0; i < 6; ++i) {
    for (size_t j = 0; j < places_.size(); ++j) {
      int num = j;
      std::shared_ptr<HeterServiceContext> context =
          std::make_shared<HeterServiceContext>();
      context->place_num_ = num;
      auto place = places_[num];
      context->scope_ = &(place_scopes_[num]->NewScope());
      auto& block = program_.Block(0);
      for (auto& var : block.AllVars()) {
        if (!var->Persistable()) {
          auto* ptr = context->scope_->Var(var->Name());
          InitializeVariable(ptr, var->GetType());
        }
      }
      for (auto& v : dense_grad_names_) {
        for (auto& name : v.second) {
          auto* ptr = context->scope_->Var(name + "pin");
          InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        }
      }
      for (auto& op_desc : block.AllOps()) {
        std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
        OperatorBase* local_op_ptr = local_op.release();
        (context->ops_).push_back(local_op_ptr);
      }
T
Thunderbrook 已提交
276
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
277 278 279 280
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
      platform::CUDADeviceGuard guard(dev_id);
      PADDLE_ENFORCE_CUDA_SUCCESS(
          cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming));
T
Thunderbrook 已提交
281
#endif
T
Thunderbrook 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
      object_pool_.Push(context);
    }
  }
  VLOG(3) << "init other env done.";
}

void HeterXpuTrainer::Run() {}

int HeterXpuTrainer::EndPass(const HeterRequest* request,
                             HeterResponse* response) {
  // int scope_num = object_pool_.Size();
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();

    for (size_t j = 0; j < place_scopes_.size(); j++) {
      Scope* cur_thread_scope = place_scopes_[j];
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
//      if (root_tensor->numel() != thread_tensor->numel()) {
//        continue;
//      }
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
T
Thunderbrook 已提交
325 326
      if (!platform::is_cpu_place(thread_tensor->place())) {
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
327 328 329 330 331
        auto dev_id =
            BOOST_GET_CONST(platform::CUDAPlace, thread_tensor->place()).device;
        platform::CUDADeviceGuard guard(dev_id);
        cudaMemset(thread_tensor->data<void>(), 0,
                   thread_tensor->numel() * SizeOfType(thread_tensor->type()));
T
Thunderbrook 已提交
332 333 334 335 336 337 338 339 340 341 342 343
#endif
#ifdef PADDLE_WITH_XPU
        auto place = thread_tensor->place();
        xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device);
        platform::DeviceContextPool& pool =
            platform::DeviceContextPool::Instance();
        platform::DeviceContext* dev_ctx = pool.Get(place);
        const platform::XPUDeviceContext* xpu_ctx =
            reinterpret_cast<const platform::XPUDeviceContext*>(dev_ctx);
        xpu::memset(xpu_ctx->x_context(), thread_tensor->data<void>(), 0,
                    thread_tensor->numel() * SizeOfType(thread_tensor->type()));
#endif
T
Thunderbrook 已提交
344 345 346 347 348 349 350 351
      } else {
        memset(thread_tensor->data<void>(), 0,
               thread_tensor->numel() * SizeOfType(thread_tensor->type()));
      }
    }
    auto* merge_var = response->add_vars();
    heter_ptr_->SerializeToReq(need_merge_var_names_[i], root_scope_,
                               merge_var);
T
Thunderbrook 已提交
352 353
    if (!platform::is_cpu_place(root_tensor->place())) {
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
354 355 356 357 358
      auto dev_id =
          BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()).device;
      platform::CUDADeviceGuard guard(dev_id);
      cudaMemset(root_tensor->data<void>(), 0,
                 root_tensor->numel() * SizeOfType(root_tensor->type()));
T
Thunderbrook 已提交
359 360 361 362 363 364 365 366 367 368 369 370
#endif
#ifdef PADDLE_WITH_XPU
      auto place = root_tensor->place();
      xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device);
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      platform::DeviceContext* dev_ctx = pool.Get(place);
      const platform::XPUDeviceContext* xpu_ctx =
          reinterpret_cast<const platform::XPUDeviceContext*>(dev_ctx);
      xpu::memset(xpu_ctx->x_context(), root_tensor->data<void>(), 0,
                  root_tensor->numel() * SizeOfType(root_tensor->type()));
#endif
T
Thunderbrook 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    } else {
      memset(root_tensor->data<void>(), 0,
             root_tensor->numel() * SizeOfType(root_tensor->type()));
    }
  }
  return 0;
}

template <typename T>
void HeterXpuTrainer::MergeToRootScope(LoDTensor* root_tensor,
                                       LoDTensor* tensor) {
  LoDTensor tmp_root;
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, root_tensor->place(), root_tensor);
}

int HeterXpuTrainer::StopService(const HeterRequest* request,
                                 HeterResponse* response) {
  std::unique_lock<std::mutex> lock(mutex_);
  running_ = false;
  cond_.notify_one();
  return 0;
}

int HeterXpuTrainer::RunTask(const HeterRequest* request,
                             HeterResponse* response) {
  auto timer = std::make_shared<paddle::ps::CostTimer>("xpu_service_run_task");
  std::shared_ptr<HeterServiceContext> context = object_pool_.Get();

  if (!context->scope_) {
T
Thunderbrook 已提交
408
    int num = rand() % places_.size();
T
Thunderbrook 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    context->place_num_ = num;
    auto place = places_[num];
    context->scope_ = &(place_scopes_[num]->NewScope());
    auto& block = program_.Block(0);
    for (auto& var : block.AllVars()) {
      if (!var->Persistable()) {
        auto* ptr = context->scope_->Var(var->Name());
        InitializeVariable(ptr, var->GetType());
      }
    }
    for (auto& v : dense_grad_names_) {
      for (auto& name : v.second) {
        auto* ptr = context->scope_->Var(name + "pin");
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      }
    }
    for (auto& op_desc : block.AllOps()) {
      std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
      OperatorBase* local_op_ptr = local_op.release();
      (context->ops_).push_back(local_op_ptr);
    }
T
Thunderbrook 已提交
430
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
431 432 433 434
    auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
    platform::CUDADeviceGuard guard(dev_id);
    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming));
T
Thunderbrook 已提交
435
#endif
T
Thunderbrook 已提交
436 437 438 439 440 441 442 443
  }

  context->Reset();
  auto place = places_[context->place_num_];
  {
    auto deserial_timer =
        std::make_shared<paddle::ps::CostTimer>("xpu_service_deserial");
    for (int i = 0; i < request->vars_size(); ++i) {
T
Thunderbrook 已提交
444
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
445 446
      heter_ptr_->DeSerializeToTensor(context->scope_, request->vars(i), place,
                                      copy_streams_[context->place_num_]);
T
Thunderbrook 已提交
447 448 449 450
#endif
#ifdef PADDLE_WITH_XPU
      heter_ptr_->DeSerializeToTensor(context->scope_, request->vars(i), place);
#endif
T
Thunderbrook 已提交
451
    }
T
Thunderbrook 已提交
452
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
453 454 455 456 457 458
    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaEventRecord(context->event_, copy_streams_[context->place_num_]));
    while (cudaEventQuery(context->event_) != cudaSuccess) {
      VLOG(3) << "wait for kernel";
      bthread_yield();
    }
T
Thunderbrook 已提交
459
#endif
T
Thunderbrook 已提交
460 461 462 463 464 465 466 467 468 469
  }

  {
    auto launch_timer =
        std::make_shared<paddle::ps::CostTimer>("xpu_service_launch_kernel");
    for (int i = xpu_begin_op_index_; i <= xpu_end_op_index_; ++i) {
      auto& op = (context->ops_)[i];
      op->Run(*(context->scope_), place);
    }
  }
T
Thunderbrook 已提交
470
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483
  auto* dev_ctx = static_cast<platform::CUDADeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaEventRecord(context->event_, dev_ctx->stream()));
  // cudaEventSynchronize(context->event_);
  {
    auto wait_timer =
        std::make_shared<paddle::ps::CostTimer>("xpu_service_wait");
    while (cudaEventQuery(context->event_) != cudaSuccess) {
      VLOG(3) << "wait for kernel";
      bthread_yield();
    }
  }
T
Thunderbrook 已提交
484 485 486 487
#endif
#ifdef PADDLE_WITH_XPU
  xpu_wait();
#endif
T
Thunderbrook 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

  for (int i = 0; i < trainer_desc_.xpu_send_list_size(); ++i) {
    const std::string& varname = trainer_desc_.xpu_send_list(i);
    // CHECK(varname == "concat_1.tmp_0@GRAD");
    auto* res_var = response->add_vars();
    heter_ptr_->SerializeToReq(varname, context->scope_, res_var);
  }

  // std::string varname = "concat_1.tmp_0@GRAD";
  //
  // auto* res_var = response->add_vars();
  // heter_ptr_->SerializeToReq(varname, context->scope_, res_var);
  for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
       ++i) {
    uint64_t tid =
        static_cast<uint64_t>(param_.program_config(0).push_dense_table_id(i));
T
Thunderbrook 已提交
504
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
505 506 507 508 509
    fleet_ptr_->PushDenseVarsAsync(
        *(context->scope_), tid, dense_grad_names_[tid],
        &(context->push_dense_status_), scale_datanorm_, request->cur_batch(),
        places_[context->place_num_], copy_streams_[context->place_num_],
        context->event_);
T
Thunderbrook 已提交
510 511 512 513 514 515 516
#endif
#ifdef PADDLE_WITH_XPU
    fleet_ptr_->PushDenseVarsAsync(
        *(context->scope_), tid, dense_grad_names_[tid],
        &(context->push_dense_status_), scale_datanorm_, request->cur_batch(),
        places_[context->place_num_]);
#endif
T
Thunderbrook 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
  }
  for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
       ++i) {
    uint64_t tid =
        static_cast<uint64_t>(param_.program_config(0).push_dense_table_id(i));
    pull_dense_worker_->IncreaseThreadVersion(0, tid);
  }
  VLOG(3) << "push dense gradient done.";
  context->scope_->DropKids();
  object_pool_.Push(context);
  VLOG(0) << "pool size " << object_pool_.Size();
  return 0;
}

void HeterXpuTrainer::RegisterServiceHandler() {
  heter_ptr_->RegisterServiceHandler(
      0, [this](const HeterRequest* request, HeterResponse* response) -> int {
        return this->RunTask(request, response);
      });
  heter_ptr_->RegisterServiceHandler(
      1, [this](const HeterRequest* request, HeterResponse* response) -> int {
        return this->EndPass(request, response);
      });
  heter_ptr_->RegisterServiceHandler(
      2, [this](const HeterRequest* request, HeterResponse* response) -> int {
        return this->StopService(request, response);
      });
}

Scope* HeterXpuTrainer::GetWorkerScope(int thread_id) { return nullptr; }

void HeterXpuTrainer::Finalize() {
  // for (auto &th : threads_) {
  //   th.join();
  // }
  std::unique_lock<std::mutex> lock(mutex_);
  cond_.wait(lock, [this] { return !running_; });
  sleep(3);
  pull_dense_worker_->Stop();
  root_scope_->DropKids();
}
}  // namespace framework
}  // namespace paddle
#endif