test_isfinite_op.py 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
S
Steffy-zxf 已提交
17
import paddle
18
import paddle.fluid as fluid
19
import paddle.fluid.core as core
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
from op_test import OpTest


class TestInf(OpTest):
    def setUp(self):
        self.op_type = "isinf"
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        x[0] = np.inf
        x[-1] = np.inf

        self.inputs = {'X': x}
        self.outputs = {'Out': np.array(True).astype(self.dtype)}

    def init_dtype(self):
        pass

    def test_output(self):
        self.check_output()


43 44 45
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
class TestFP16Inf(TestInf):
    def init_dtype(self):
        self.dtype = np.float16


class TestNAN(OpTest):
    def setUp(self):
        self.op_type = "isnan"
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        x[0] = np.nan
        x[-1] = np.nan

        self.inputs = {'X': x}
        self.outputs = {'Out': np.array(True).astype(self.dtype)}

    def init_dtype(self):
        pass

    def test_output(self):
        self.check_output()


71 72 73
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
class TestFP16NAN(TestNAN):
    def init_dtype(self):
        self.dtype = np.float16


class TestIsfinite(OpTest):
    def setUp(self):
        self.op_type = "isfinite"
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        x[0] = np.inf
        x[-1] = np.nan
        out = np.isinf(x) | np.isnan(x)

        self.inputs = {'X': x}
        self.outputs = {'Out': np.array(False).astype(self.dtype)}

    def init_dtype(self):
        pass

    def test_output(self):
        self.check_output()


100 101 102
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
103 104 105 106 107
class TestFP16Isfinite(TestIsfinite):
    def init_dtype(self):
        self.dtype = np.float16


108 109 110 111 112 113 114 115 116 117
class BadInputTest(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_has_inf_bad_x():
                data = [1, 2, 3]
                result = fluid.layers.has_inf(data)

            self.assertRaises(TypeError, test_has_inf_bad_x)

S
Steffy-zxf 已提交
118 119
        with fluid.dygraph.guard():
            data = paddle.zeros([2, 3])
120
            result = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
121 122 123
            expect_value = np.array([False])
            self.assertEqual((result.numpy() == expect_value).all(), True)

124

125 126
if __name__ == '__main__':
    unittest.main()