primreg.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools


class Registry(object):
    """ A general registry object. """
    __slots__ = ['name', 'tab']

    def __init__(self, name):
        self.name = name
        self.tab = {}

    def register(self, name, value):
        assert name not in self.tab, f'name "{name}" should not be registered before.'
        self.tab[name] = value

    def lookup(self, name):
        return self.tab.get(name)


_primop_fn = Registry('primop_fn')
_orig2prim = Registry('orig2prim')
_prim2orig = Registry('prim2orig')
_primop_jvp = Registry('primop_jvp')
_primop_transpose = Registry('primop_transpose')
_primop_position_argnames = Registry('primop_position_argnames')


def lookup_fn(optype):
    return _primop_fn.lookup(optype)


def lookup_orig2prim(optype):
    return _orig2prim.lookup(optype)


def lookup_prim2orig(optype):
    return _prim2orig.lookup(optype)


def lookup_jvp(optype):
    return _primop_jvp.lookup(optype)


def lookup_transpose(optype):
    return _primop_transpose.lookup(optype)


def op_position_inputs(op):
    """
    Returns the position inputs of `op` as registered with REGISTER_FN.
    
    Args:
        op(Operator): The op that needs to get the inputs

    Returns:
        Tensor(s): Inputs of the op

    Examples: 
        .. code-block:: python
            @REGISTER_FN('div_p', 'X', 'Y', 'Z')
            def div(x, y, out=None):
                return _simple_binop(LayerHelper('div_p', **locals()))

    The registered inputs are ['X', 'Y'] for div_p and accordingly this
    function will return inputs in the order of X then Y.
    
    """
    args = _primop_position_argnames.lookup(op.type)
83
    assert args is not None, f'args of {op.type} should not be None in op_position_inputs().'
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    *input_names, _ = args

    inputs = []
    for name in input_names:
        vars = list(map(op.block.var, op.input(name)))
        assert len(
            vars
        ) >= 0, f'len(vars) should be greater than or equal to 0, but len(vars)={len(vars)}.'
        if len(vars) > 1:
            inputs.append(vars)
        else:
            inputs.append(vars[0])

    return inputs


def op_position_output(op):
    """
    Returns the output of `op` as registered with REGISTER_FN.
    
    Args:
        op(Operator): The op that needs to get the output

    Returns:
        Tensor(s): Output of the op

    Examples: 
        .. code-block:: python
            @REGISTER_FN('div_p', 'X', 'Y', 'Z')
            def div(x, y, out=None):
                return _simple_binop(LayerHelper('div_p', **locals()))

    The registered output is ['Z'] for div_p and accordingly this
    function will return output Z.
    
    """
    args = _primop_position_argnames.lookup(op.type)
    assert args is not None, 'args should not be None in op_position_output().'
    *_, output_name = args

    outvars = list(map(op.block.var, op.output(output_name)))
    assert len(
        outvars
    ) >= 0, f'len(outvars) should be greater than or equal to 0, but len(outvars)={len(outvars)}.'
    if len(outvars) > 1:
        output = outvars
    else:
        output = outvars[0]

    return output


def REGISTER_FN(op_type, *position_argnames):
    """
    Decorator for registering the Python function for a primitive op.        

    Args:
        op_type(str): The op name
        position_argnames(list[str]): Input and ouput names of the op

    Returns:
        wrapper: Inner wrapper function

    Examples: 
        .. code-block:: python
        @REGISTER_FN('tanh_p', 'X', 'Y')
        def tanh(x, out=None):
            return _simple_unop(LayerHelper('tanh_p', **locals()))
    
    """

    if not isinstance(op_type, str):
        raise TypeError(f'op_type must be str, but got {type(op_type)}.')

    _primop_position_argnames.register(op_type, position_argnames)

    def wrapper(f):
        _primop_fn.register(op_type, f)
        return f

    return wrapper


def REGISTER_ORIG2PRIM(op_type):
    """
    Decorator for registering the lower function for an original op into sequence of primitive ops.
    
    Args:
        op_type(str): The op name

    Returns:
        wrapper: Inner wrapper function

    Examples:
        .. code-block:: python
            @REGISTER_ORIG2PRIM('tanh')
            def tanh_orig2prim(op):
                x, = get_input_var_list(op)
                return primops.tanh(x)

    """
    if not isinstance(op_type, str):
        raise TypeError(f'op_type must be str, but got {type(op_type)}.')

    def wrapper(f):
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        def _lower(op, *args, **kwargs):
            assert op.type == op_type, f'op.type should be equal to op_type, but op.type is {op.type} and op_type is {op_type}'
            return f(op, *args, **kwargs)

        _orig2prim.register(op_type, _lower)

    return wrapper


def REGISTER_PRIM2ORIG(op_type):
    """
    Decorator for registering the lower function for an primitive op into sequence of original ops.
    
    Args:
        op_type(str): The op name

    Returns:
        wrapper: Inner wrapper function

    Examples:
        .. code-block:: python
            @REGISTER_PRIM2ORIG('tanh_p')
            def tanh_prim2orig(op):
                x, = get_input_var_list(op)
                return paddle.tanh(x)

    """
    if not isinstance(op_type, str):
        raise TypeError(f'op_type must be str, but got {type(op_type)}.')

    def wrapper(f):
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        def _lower(op, *args, **kwargs):
            assert op.type == op_type, f'op.type should be equal to op_type, but op.type is {op.type} and op_type is {op_type}'
            return f(op, *args, **kwargs)

        _prim2orig.register(op_type, _lower)

    return wrapper


def REGISTER_JVP(op_type):
    """
    Decorator for registering the JVP function for a primitive op.
    
    Args:
        op_type(str): The op name

    Returns:
        wrapper: Inner wrapper function

    Examples:
        .. code-block:: python
            @REGISTER_JVP('add_p')
            def add_jvp(op, x_dot, y_dot):
                return primops.add(x_dot, y_dot)
    
    """
    if not isinstance(op_type, str):
        raise TypeError(f'op_type must be str, but got {type(op_type)}.')

    def wrapper(f):
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        def _jvp(op, *args, **kwargs):
            assert op.type == op_type, f'op.type should be equal to op_type, but op.type is {op.type} and op_type is {op_type}'
            return f(op, *args, **kwargs)

        _primop_jvp.register(op_type, _jvp)
        return f

    return wrapper


def REGISTER_TRANSPOSE(op_type):
    """
    Decorator for registering the transpose function for a primitive op
    that denotes a linear operation in the forward AD graph.
    
    Args:
        op_type(str): The op name

    Returns:
        wrapper: Inner wrapper function

    Examples:
        .. code-block:: python
            @REGISTER_TRANSPOSE('add_p')
            def add_transpose(op, z_bar):
                return z_bar, z_bar
    
    """
    if not isinstance(op_type, str):
        raise TypeError(f'op_type must be str, but got {type(op_type)}.')

    def wrapper(f):
285

286 287 288 289 290 291 292 293
        def _transpose(op, dot_checker, *args, **kwargs):
            assert op.type == op_type, f'op.type should be equal to op_type, but op.type is {op.type} and op_type is {op_type}'
            return f(op, dot_checker, *args, **kwargs)

        _primop_transpose.register(op_type, _transpose)
        return f

    return wrapper