grid_sampler_op.cc 9.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/grid_sampler_op.h"
16
#include <memory>
17
#include <string>
D
dengkaipeng 已提交
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/framework/op_version_registry.h"
20
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
D
dengkaipeng 已提交
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class GridSampleOp : public framework::OperatorWithKernel {
28 29 30
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kaipeng Deng 已提交
31 32 33
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "GridSampler");
    OP_INOUT_CHECK(ctx->HasInput("Grid"), "Input", "Grid", "GridSampler");
    OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "GridSampler");
34 35 36

    auto x_dims = ctx->GetInputDim("X");
    auto grid_dims = ctx->GetInputDim("Grid");
37 38 39 40 41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(x_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input(X) of GridSampleOp should be 4-D Tensor, but "
                          "received X dimension size(%d)",
                          x_dims.size()));
    PADDLE_ENFORCE_EQ(grid_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input(Grid) of GridSampleOp should be 4-D Tensor, "
                          "but received X dimension size(%d)",
                          grid_dims.size()));
47
    if (ctx->IsRuntime() || grid_dims[3] > 0) {
48 49 50 51 52
      PADDLE_ENFORCE_EQ(
          grid_dims[3], 2,
          platform::errors::InvalidArgument(
              "Input(Grid) dimension[3] should be 2, but received %d",
              grid_dims[3]));
53
    }
54
    if (ctx->IsRuntime()) {
55 56 57 58 59 60
      PADDLE_ENFORCE_EQ(
          grid_dims[0], x_dims[0],
          platform::errors::InvalidArgument(
              "Input(X) and Input(Grid) dimension[0] should be equal, but "
              "received X dimension[0](%d) != Grid dimension[0](%d)",
              x_dims[0], grid_dims[0]));
61
    }
62

63 64
    ctx->SetOutputDim("Output",
                      {x_dims[0], x_dims[1], grid_dims[1], grid_dims[2]});
65 66 67 68 69 70 71
    ctx->ShareLoD("X", "Output");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
72
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
73 74
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
75
    }
76
#endif
77 78 79
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        framework::DataLayout::kAnyLayout, library_);
80
  }
D
dengkaipeng 已提交
81 82 83
};

class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
84 85 86 87 88 89 90 91 92
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input data of GridSampleOp, "
             "This is a 4-D tensor with shape of [N, C, H, W]");
    AddInput(
        "Grid",
        "(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
        "This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
T
tianshuo78520a 已提交
93
        "of x and y coordinates with shape [N, H, W] in last dimension");
94 95 96 97
    AddOutput("Output", "(Tensor) Output tensor with shape [N, C, H, W]");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default true) Only used in cudnn kernel, need install cudnn")
98 99
        .SetDefault(true)
        .AsExtra();
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    AddAttr<bool>(
        "align_corners",
        "(bool, default true) If align_corners is true, it will project"
        "-1 and 1 to the centers of the corner pixels. Otherwise, it will "
        "project"
        "-1 and 1 to the image edges.")
        .SetDefault(true);

    AddAttr<std::string>(
        "mode",
        "(bool, default true) The interpolation method which can be 'bilinear'"
        " or 'nearest'.")
        .SetDefault("bilinear");

    AddAttr<std::string>(
        "padding_mode",
        "(bool, default true) The padding method used when source"
118
        "index is out of input images. It can be 'zeros', 'reflection' and "
119 120 121
        "'border'.")
        .SetDefault("zeros");

122
    AddComment(R"DOC(
123
      This operation samples input X by using bilinear or nearest interpolation based on 
T
tianshuo78520a 已提交
124
      flow field grid, which is usually generated by affine_grid. The grid of
125 126
      shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
      with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
T
tianshuo78520a 已提交
127 128
      (in width dimension) of input data x and grid_y is indexing the 3rd 
      dimension (in height dimension), finally results is the bilinear 
129
      interpolation value or nearest value of 4 nearest corner points.
130

131
      For bilinear interpolation mode:
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
      Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

      Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
        interpolate point value by 4 nearest points.

          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn

        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord

        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side

        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value

        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
        )DOC");
170
  }
D
dengkaipeng 已提交
171 172 173
};

class GridSampleOpGrad : public framework::OperatorWithKernel {
174
 public:
D
dengkaipeng 已提交
175 176
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
177 178
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "grid_sampler");
179 180 181 182 183 184 185 186
    auto input_dims = ctx->GetInputDim("X");
    auto grid_dims = ctx->GetInputDim("Grid");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Grid"))) {
      ctx->SetOutputDim(framework::GradVarName("Grid"), grid_dims);
    }
D
dengkaipeng 已提交
187 188
  }

189 190 191 192
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
193
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
194 195
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
196
    }
197
#endif
198 199 200
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        framework::DataLayout::kAnyLayout, library_);
201
  }
D
dengkaipeng 已提交
202 203
};

H
hong 已提交
204 205
template <typename T>
class GridSampleGradMaker : public framework::SingleGradOpMaker<T> {
206
 public:
H
hong 已提交
207
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
208 209

 protected:
210
  void Apply(GradOpPtr<T> op) const override {
211
    op->SetType("grid_sampler_grad");
H
hong 已提交
212 213 214
    op->SetInput("X", this->Input("X"));
    op->SetInput("Grid", this->Input("Grid"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
215

H
hong 已提交
216
    op->SetAttrMap(this->Attrs());
217

H
hong 已提交
218 219
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Grid"), this->InputGrad("Grid"));
220
  }
D
dengkaipeng 已提交
221 222
};

223 224
}  // namespace operators
}  // namespace paddle
D
dengkaipeng 已提交
225 226 227

namespace ops = paddle::operators;
REGISTER_OPERATOR(grid_sampler, ops::GridSampleOp, ops::GridSampleOpMaker,
H
hong 已提交
228 229
                  ops::GridSampleGradMaker<paddle::framework::OpDesc>,
                  ops::GridSampleGradMaker<paddle::imperative::OpBase>);
D
dengkaipeng 已提交
230 231 232 233 234 235 236 237 238 239
REGISTER_OPERATOR(grid_sampler_grad, ops::GridSampleOpGrad);

REGISTER_OP_CPU_KERNEL(
    grid_sampler,
    ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    grid_sampler_grad,
    ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, double>);
240 241 242 243 244 245 246 247

REGISTER_OP_VERSION(grid_sampler)
    .AddCheckpoint(
        R"ROC(
      Upgrade grid_sampler add a new attribute [mode].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "mode", "In order to specify interpolation mode", "bilinear"));