test_resnet_prim_cinn.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import unittest

import numpy as np

import paddle
21 22
from paddle import fluid
from paddle.fluid import core
23 24 25 26 27 28 29 30 31
from paddle.vision.models import resnet50

SEED = 2020
base_lr = 0.001
momentum_rate = 0.9
l2_decay = 1e-4
batch_size = 2
epoch_num = 1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# In V100, 16G, CUDA 11.2, the results are as follows:
# DY2ST_PRIM_CINN_GT = [
#     5.8473358154296875,
#     8.322463989257812,
#     5.169863700866699,
#     8.399882316589355,
#     7.859550476074219,
#     7.4672698974609375,
#     9.828727722167969,
#     8.270355224609375,
#     8.456792831420898,
#     9.919631958007812,
# ]

# The results in ci as as follows:
DY2ST_PRIM_CINN_GT = [
48
    5.828786849975586,
C
cyber-pioneer 已提交
49 50 51 52 53 54 55 56 57
    8.332863807678223,
    5.0373005867004395,
    8.464998245239258,
    8.20099925994873,
    7.576723098754883,
    9.679173469543457,
    8.381753921508789,
    8.10612678527832,
    10.124727249145508,
58
]
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
if core.is_compiled_with_cuda():
    paddle.set_flags({'FLAGS_cudnn_deterministic': True})


def reader_decorator(reader):
    def __reader__():
        for item in reader():
            img = np.array(item[0]).astype('float32').reshape(3, 224, 224)
            label = np.array(item[1]).astype('int64').reshape(1)
            yield img, label

    return __reader__


def optimizer_setting(parameter_list=None):
    optimizer = fluid.optimizer.Momentum(
        learning_rate=base_lr,
        momentum=momentum_rate,
77
        regularization=paddle.regularizer.L2Decay(l2_decay),
78 79 80 81 82 83
        parameter_list=parameter_list,
    )

    return optimizer


W
WangZhen 已提交
84 85 86 87 88 89 90
def run(model, data_loader, optimizer, mode):
    if mode == 'train':
        model.train()
        end_step = 9
    elif mode == 'eval':
        model.eval()
        end_step = 1
91 92 93 94 95 96 97 98 99 100 101

    for epoch in range(epoch_num):
        total_acc1 = 0.0
        total_acc5 = 0.0
        total_sample = 0
        losses = []

        for batch_id, data in enumerate(data_loader()):
            start_time = time.time()
            img, label = data

W
WangZhen 已提交
102
            pred = model(img)
103 104 105 106 107 108 109 110 111 112 113
            avg_loss = paddle.nn.functional.cross_entropy(
                input=pred,
                label=label,
                soft_label=False,
                reduction='mean',
                use_softmax=True,
            )

            acc_top1 = paddle.static.accuracy(input=pred, label=label, k=1)
            acc_top5 = paddle.static.accuracy(input=pred, label=label, k=5)

W
WangZhen 已提交
114 115 116 117
            if mode == 'train':
                avg_loss.backward()
                optimizer.minimize(avg_loss)
                model.clear_gradients()
118 119 120 121

            total_acc1 += acc_top1
            total_acc5 += acc_top5
            total_sample += 1
122
            losses.append(avg_loss.numpy().item())
123 124 125

            end_time = time.time()
            print(
W
WangZhen 已提交
126
                "[%s]epoch %d | batch step %d, loss %0.8f, acc1 %0.3f, acc5 %0.3f, time %f"
127
                % (
W
WangZhen 已提交
128
                    mode,
129 130 131 132 133 134 135 136
                    epoch,
                    batch_id,
                    avg_loss,
                    total_acc1.numpy() / total_sample,
                    total_acc5.numpy() / total_sample,
                    end_time - start_time,
                )
            )
W
WangZhen 已提交
137
            if batch_id >= end_step:
138 139 140
                # avoid dataloader throw abort signaal
                data_loader._reset()
                break
141
    print(losses)
142 143 144
    return losses


W
WangZhen 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
def train(to_static, enable_prim, enable_cinn):
    if core.is_compiled_with_cuda():
        paddle.set_device('gpu')
    else:
        paddle.set_device('cpu')
    np.random.seed(SEED)
    paddle.seed(SEED)
    paddle.framework.random._manual_program_seed(SEED)
    fluid.core._set_prim_all_enabled(enable_prim)

    train_reader = paddle.batch(
        reader_decorator(paddle.dataset.flowers.train(use_xmap=False)),
        batch_size=batch_size,
        drop_last=True,
    )
    data_loader = fluid.io.DataLoader.from_generator(capacity=5, iterable=True)
    data_loader.set_sample_list_generator(train_reader)

    resnet = resnet50(False)
    if to_static:
        build_strategy = paddle.static.BuildStrategy()
        if enable_cinn:
            build_strategy.build_cinn_pass = True
        resnet = paddle.jit.to_static(resnet, build_strategy=build_strategy)
    optimizer = optimizer_setting(parameter_list=resnet.parameters())

    train_losses = run(resnet, data_loader, optimizer, 'train')
    if to_static and enable_prim and enable_cinn:
        eval_losses = run(resnet, data_loader, optimizer, 'eval')
    return train_losses


177 178
class TestResnet(unittest.TestCase):
    @unittest.skipIf(
179 180
        not (paddle.is_compiled_with_cinn() and paddle.is_compiled_with_cuda()),
        "paddle is not compiled with CINN and CUDA",
181 182 183 184 185 186
    )
    def test_prim_cinn(self):
        dy2st_prim_cinn = train(
            to_static=True, enable_prim=True, enable_cinn=True
        )
        np.testing.assert_allclose(
187
            dy2st_prim_cinn, DY2ST_PRIM_CINN_GT, rtol=1e-5
188 189 190 191 192
        )


if __name__ == '__main__':
    unittest.main()