ir_simplify.cc 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2021 CINN Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/cinn/optim/ir_simplify.h"

#include <absl/container/flat_hash_map.h>
#include <ginac/ginac.h>
#include <glog/logging.h>

#include <map>
#include <string>

#include "paddle/cinn/common/arithmatic.h"
#include "paddle/cinn/common/cas.h"
#include "paddle/cinn/common/ir_util.h"
27
#include "paddle/cinn/ir/op/ir_operators.h"
28
#include "paddle/cinn/ir/tensor.h"
29 30 31
#include "paddle/cinn/ir/utils/ir_mutator.h"
#include "paddle/cinn/ir/utils/ir_printer.h"
#include "paddle/cinn/ir/utils/ir_visitor.h"
32 33 34 35 36
#include "paddle/cinn/utils/string.h"

namespace cinn {
namespace optim {
using namespace ir;  // NOLINT
37
using common::bfloat16;
38
using common::ExprToGinacConverter;
39
using common::float16;
40 41 42 43 44
using utils::GetStreamCnt;
using utils::Replace;

namespace {

45 46 47 48 49 50 51 52
//! Simplify some sub-expression in the `expr`. Due to the simplify strategy
//! just fit several kinds of IR noedes, we partition the original expression to
//! several sub-expression those supported by simplify, and process each of
//! them.
void PartialSimplify(
    Expr* expr,
    const absl::flat_hash_map<std::string, common::CasInterval>& var_intervals =
        {}) {
53 54 55 56
  *expr = common::AutoSimplify(*expr, var_intervals);
}

//! Simplify the expression but Load.
57
struct SimplifyNoPureMathMutator : public ir::IRMutator<ir::Expr*> {
58
  common::cas_intervals_t& var_intervals;
59
  explicit SimplifyNoPureMathMutator(
60
      common::cas_intervals_t& var_intervals)  // NOLINT
61
      : var_intervals(var_intervals) {}
62 63 64 65 66

  void operator()(Expr* x) { ir::IRMutator<ir::Expr*>::Visit(x, x); }

  using ir::IRMutator<>::Visit;

67 68 69 70
#define __(op__)                                    \
  void Visit(const op__* op, Expr* expr) override { \
    PartialSimplify(expr, var_intervals);           \
  }
71 72 73 74 75 76 77 78 79 80

  __(Add)
  __(Mul)
  __(Sub)
  __(Div)
  __(Min)
  __(Max)
#undef __

  void Visit(const PolyFor* op, Expr* expr) override {
81
    auto* node = expr->As<ir::PolyFor>();
82 83 84 85 86 87 88 89 90
    node->condition = common::SolveInequality(op->condition, op->iterator);

    Visit(&node->body, &node->body);
  }

  void Visit(const For* op, Expr* expr) override {
    auto* node = expr->As<ir::For>();
    Visit(&node->min, &node->min);
    Visit(&node->extent, &node->extent);
91
    auto* min_i = op->min.As<IntImm>();
92 93
    auto* extent_i = op->extent.As<IntImm>();
    if (min_i && extent_i && extent_i->value > min_i->value) {
94 95 96
      var_intervals.emplace(
          op->loop_var->name,
          common::CasInterval{min_i->value, extent_i->value - 1});
97
    } else {
98 99
      var_intervals.emplace(op->loop_var->name,
                            common::CasInterval{op->min, op->extent - 1});
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    }

    Visit(&node->body, &node->body);
    if (min_i && extent_i) {
      var_intervals.erase(op->loop_var->name);
    }
  }

  void Visit(const _Tensor_* op, Expr* expr) override {
    auto* node = expr->As<ir::_Tensor_>();

    for (auto& e : node->shape) {
      PartialSimplify(&e, var_intervals);
    }
    for (auto& e : node->domain) {
      PartialSimplify(&e, var_intervals);
    }
  }
};

struct SimplifyLoadMutator : public ir::IRMutator<ir::Expr*> {
  void operator()(Expr* x) { ir::IRMutator<ir::Expr*>::Visit(x, x); }

  void Visit(const Load* expr, Expr* op) override {
    auto* node = op->As<Load>();
    for (auto& idx : node->indices) {
      if (common::IsPureMath(idx)) {
        PartialSimplify(&idx, var_intervals_);
      } else {
129
        SimplifyNoPureMathMutator mutator(var_intervals_);
130 131 132 133 134 135
        mutator(&idx);
      }
    }
  }

  void Visit(const For* op, Expr* expr) override {
136
    auto* min_i = op->min.As<IntImm>();
137 138
    auto* extent_i = op->extent.As<IntImm>();
    if (min_i && extent_i && extent_i->value > min_i->value) {
139 140 141
      var_intervals_.emplace(
          op->loop_var->name,
          common::CasInterval{min_i->value, extent_i->value - 1});
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    }

    auto* node = expr->As<For>();

    operator()(&node->body);
    operator()(&node->extent);

    if (min_i && extent_i) {
      var_intervals_.erase(op->loop_var->name);
    }
  }

  common::cas_intervals_t var_intervals_;
};

struct SimplifyStoreMutator : public ir::IRMutator<ir::Expr*> {
  void operator()(Expr* x) { ir::IRMutator<ir::Expr*>::Visit(x, x); }

  void Visit(const Store* expr, Expr* op) override {
    auto* node = op->As<Store>();

    for (auto& idx : node->indices) {
      if (common::IsPureMath(idx)) {
        PartialSimplify(&idx, var_intervals_);
      } else {
167
        SimplifyNoPureMathMutator mutator(var_intervals_);
168 169 170 171 172 173
        mutator(&idx);
      }
    }
  }

  void Visit(const For* op, Expr* expr) override {
174
    auto* min_i = op->min.As<IntImm>();
175 176
    auto* extent_i = op->extent.As<IntImm>();
    if (min_i && extent_i) {
177 178 179
      var_intervals_.emplace(
          op->loop_var->name,
          common::CasInterval{min_i->value, extent_i->value - 1});
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    }

    auto* node = expr->As<For>();

    operator()(&node->body);
    operator()(&node->extent);

    if (min_i && extent_i) {
      var_intervals_.erase(op->loop_var->name);
    }
  }

  common::cas_intervals_t var_intervals_;
};

struct SimplifyRampMutator : public ir::IRMutator<Expr*> {
  void operator()(Expr* x) { ir::IRMutator<ir::Expr*>::Visit(x, x); }

  void Visit(const Ramp* op, Expr* expr) override {
    auto* node = expr->As<ir::Ramp>();

201 202 203 204
    CHECK(common::IsPureMath(node->base))
        << node->base << "is not a pure math!";
    CHECK(common::IsPureMath(node->stride))
        << node->stride << "is not a pure math!";
205

206 207
    PartialSimplify(&node->base);
    PartialSimplify(&node->stride);
208 209 210
  }
  // ramp + ramp
  void Visit(const Add* op, Expr* expr) override {
211 212 213
    auto* node = expr->As<ir::Add>();
    Expr a = node->a();
    Expr b = node->b();
214 215 216 217
    auto a_ramp = a.As<ir::Ramp>();
    auto b_ramp = b.As<ir::Ramp>();

    if (a_ramp && b_ramp && a_ramp->lanes == b_ramp->lanes) {
218
      Expr base_add = common::AutoSimplify(a_ramp->base + b_ramp->base);
219
      Expr stride_add = common::AutoSimplify(a_ramp->stride + b_ramp->stride);
220
      *expr = ir::Ramp::Make(base_add, stride_add, a_ramp->lanes);
221 222 223 224 225 226 227 228 229 230
    }
  }
};

struct SimplifyIfThenElseMutator : public ir::IRMutator<> {
  void operator()(Expr* x) { ir::IRMutator<>::Visit(x, x); }

  using ir::IRMutator<>::Visit;

  void Visit(const IfThenElse* op, Expr* expr) override {
231
    auto* node = expr->As<ir::IfThenElse>();
232 233
    node->condition = common::AutoSimplify(node->condition);

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    auto* condition_int = node->condition.As<ir::IntImm>();
    auto* condition_uint = node->condition.As<ir::UIntImm>();
    int64_t value;
    if (condition_int || condition_uint) {
      if (condition_int) {
        value = condition_int->value;
      } else {
        value = condition_uint->value;
      }
      if (value) {
        *expr = op->true_case;
      } else {
        if (op->false_case.defined()) {
          *expr = op->false_case;
        } else {
          // null condition
          *expr = ir::Block::Make({});
        }
      }
    }
    if (expr->As<ir::IfThenElse>()) {
      if (node->true_case.defined()) Visit(&node->true_case, &node->true_case);
      if (node->false_case.defined())
        Visit(&node->false_case, &node->false_case);
    }
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  }
};

struct ReplaceFracWithDivMutator : public ir::IRMutator<> {
  void operator()(Expr* x) { ir::IRMutator<>::Visit(x, x); }

  void Visit(const FracOp* op, Expr* expr) override {
    auto* node = expr->As<ir::FracOp>();

    ir::IRMutator<>::Visit(&node->operand(0), &node->operand(0));
    ir::IRMutator<>::Visit(&node->operand(1), &node->operand(1));

    *expr = ir::Div::Make(node->operand(0), node->operand(1));
  }
};

struct SimplifyBlocksMutator : public ir::IRMutator<> {
276
  SimplifyBlocksMutator() {}
277 278 279 280 281 282 283 284 285 286 287 288 289

  void operator()(Expr* x) { ir::IRMutator<ir::Expr*>::Visit(x, x); }

  using ir::IRMutator<>::Visit;

  void Visit(const Block* op, Expr* expr) override {
    auto* node = expr->As<ir::Block>();

    if (node->stmts.size() == 1 && node->stmts[0].As<ir::Block>()) {
      VLOG(6) << "Simplify size-1 ir::Block";
      *expr = node->stmts[0];
      Visit(expr, expr);
    } else {
290 291 292
      for (auto& s : node->stmts) {
        Visit(&s, &s);
      }
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      std::vector<Expr> stmts;
      for (auto& s : node->stmts) {
        if (s.As<ir::Block>()) {
          VLOG(6) << "Simplify ir::Block inside ir::Block";
          auto inner_block = s.As<ir::Block>();
          for (auto inner_stmt : inner_block->stmts) {
            stmts.push_back(inner_stmt);
          }
        } else {
          stmts.push_back(s);
        }
      }
      expr->As<ir::Block>()->stmts = stmts;
    }
  }
};

struct SimplifyForLoopsMutator : public ir::IRMutator<> {
  absl::flat_hash_map<std::string, common::CasInterval> var_intervals;
312
  SimplifyForLoopsMutator() {}
313 314 315 316 317 318 319 320 321

  void operator()(Expr* x) { ir::IRMutator<ir::Expr*>::Visit(x, x); }

  using ir::IRMutator<>::Visit;

  void Visit(const For* op, Expr* expr) override {
    auto* node = expr->As<ir::For>();
    Visit(&node->min, &node->min);
    Visit(&node->extent, &node->extent);
322
    auto* min_i = node->min.As<IntImm>();
323
    auto* extent_i = node->extent.As<IntImm>();
324 325
    if (min_i && extent_i && extent_i->value > min_i->value &&
        extent_i->value - min_i->value == 1) {
326 327
      VLOG(6) << "Simplify current For Loop";
      std::string var_name = node->loop_var->name;
328 329
      var_intervals.emplace(
          var_name, common::CasInterval{min_i->value, extent_i->value - 1});
傅剑寒 已提交
330 331 332

      *expr = node->body;

333 334 335 336 337 338 339 340 341 342 343 344
      Visit(expr, expr);
      var_intervals.erase(var_name);
    } else {
      Visit(&node->body, &node->body);
    }
  }

  void Visit(const _Var_* op, Expr* expr) override {
    auto* node = expr->As<ir::_Var_>();

    if (var_intervals.count(node->name)) {
      auto loop_range = var_intervals.at(node->name);
345
      *expr = Expr(loop_range.l);
346 347 348 349
    }
  }
};

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
template <typename CastType, typename T>
CastType NormCastValue(T value) {
  if (type_of<CastType>().is_uint() || type_of<T>().is_uint()) {
    // not support uint
    return static_cast<CastType>(value);
  }

  if (std::isinf(value)) {
    return std::numeric_limits<CastType>::infinity();
  } else if (std::isnan(value)) {
    return std::numeric_limits<CastType>::signaling_NaN();
  } else if (value >= static_cast<T>(std::numeric_limits<CastType>::max())) {
    return std::numeric_limits<CastType>::max();
  } else if (value <= static_cast<T>(std::numeric_limits<CastType>::lowest())) {
    return std::numeric_limits<CastType>::lowest();
  }
  return static_cast<CastType>(value);
}

struct SimplifyCastMutator : public ir::IRMutator<> {
  void operator()(Expr* expr) { ir::IRMutator<ir::Expr*>::Visit(expr, expr); }

  void Visit(const ir::Cast* op, Expr* expr) {
    auto* node = expr->As<ir::Cast>();

    ir::IRMutator<ir::Expr*>::Visit(&node->v(), &node->v());

    if (op->type() == op->v().type()) {
      *expr = op->v();
      return;
    }

#define __CAST_TO_TYPE(type__)                                          \
  if (auto* i = op->v().As<ir::IntImm>()) {                             \
    *expr = Expr(static_cast<type__>(i->value));                        \
  } else if (auto* f = op->v().As<ir::FloatImm>()) {                    \
    *expr = Expr(static_cast<type__>(NormCastValue<type__>(f->value))); \
  } else if (auto* u = op->v().As<ir::UIntImm>()) {                     \
    *expr = Expr(static_cast<type__>(u->value));                        \
  } else {                                                              \
    CINN_NOT_IMPLEMENTED                                                \
  }

    if (op->v().is_constant()) {
      if (op->type() == type_of<int8_t>()) {
        __CAST_TO_TYPE(int8_t)
      } else if (op->type() == type_of<int16_t>()) {
        __CAST_TO_TYPE(int16_t)
      } else if (op->type() == type_of<int32_t>()) {
        __CAST_TO_TYPE(int32_t)
      } else if (op->type() == type_of<int64_t>()) {
        __CAST_TO_TYPE(int64_t)
      } else if (op->type() == type_of<uint8_t>()) {
        __CAST_TO_TYPE(uint8_t)
      } else if (op->type() == type_of<uint16_t>()) {
        __CAST_TO_TYPE(uint16_t)
      } else if (op->type() == type_of<uint32_t>()) {
        __CAST_TO_TYPE(uint32_t)
      } else if (op->type() == type_of<uint64_t>()) {
        __CAST_TO_TYPE(uint64_t)
      } else if (op->type() == type_of<float>()) {
        __CAST_TO_TYPE(float)
      } else if (op->type() == type_of<double>()) {
        __CAST_TO_TYPE(double)
      } else if (op->type() == type_of<bool>()) {
        __CAST_TO_TYPE(bool)
      } else if (op->type() == type_of<uint32_t>()) {
        __CAST_TO_TYPE(uint32_t)
      } else if (op->type() == type_of<uint64_t>()) {
        __CAST_TO_TYPE(uint64_t)
      } else if (op->type() == type_of<bfloat16>()) {
        // Cannot simplify!!! pass
        __CAST_TO_TYPE(bfloat16)
      } else if (op->type() == type_of<float16>()) {
        // Cannot simplify!!! pass
        __CAST_TO_TYPE(float16)
      } else {
        CINN_NOT_IMPLEMENTED
      }
    }
#undef __CAST_TO_TYPE
  }
};

434 435 436 437
}  // namespace

void Simplify(Expr* expr) {
  VLOG(3) << "Begin Simplify " << *expr;
438
  SimplifyCastMutator()(expr);
439 440 441 442 443 444
  SimplifyRampMutator()(expr);
  SimplifyLoadMutator()(expr);
  SimplifyStoreMutator()(expr);
  SimplifyIfThenElseMutator()(expr);

  common::cas_intervals_t var_intervals;
445
  SimplifyNoPureMathMutator mutator(var_intervals);
446 447 448 449 450
  mutator(expr);

  ReplaceFracWithDivMutator()(expr);
}

451
void SimplifyCast(Expr* expr) { SimplifyCastMutator()(expr); }
452 453 454 455 456
void SimplifyForLoops(Expr* expr) { SimplifyForLoopsMutator()(expr); }
void SimplifyBlocks(Expr* expr) { SimplifyBlocksMutator()(expr); }

}  // namespace optim
}  // namespace cinn