ActivationFunction.cpp 9.4 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ActivationFunction.h"

#include <algorithm>
#include <memory>
#include <iostream>
#include <type_traits>
#include <string>
#include <thread>
#include "paddle/utils/ClassRegistrar.h"
#include "paddle/parameter/Argument.h"

#include "paddle/utils/Logging.h"

namespace paddle {

static ClassRegistrar<ActivationFunction> gActivationRegistrar;
Q
qijun 已提交
31 32 33 34 35 36
/**
 * @def ACTIVATION_CLASS_NAME
 * @brief Macro for getting derived activation class name
 * @note ACTIVATION_CLASS_NAME(softmax) softmax_;
 * means softmaxActivation softmax_;
 */
Z
zhangjinchao01 已提交
37
#define ACTIVATION_CLASS_NAME(ACTIVATION_NAME) ACTIVATION_NAME##Activation
Q
qijun 已提交
38 39 40 41
/**
 * @def BEGIN_DEFINE_ACTIVATION
 * @brief Macro for defining a devried activation class
 */
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48
#define BEGIN_DEFINE_ACTIVATION(ACTIVATION_NAME)                             \
  class ACTIVATION_CLASS_NAME(ACTIVATION_NAME) : public ActivationFunction { \
  private:                                                                   \
    static const std::string name;                                           \
                                                                             \
  public:                                                                    \
    const std::string& getName() const { return name; }
Q
qijun 已提交
49 50 51 52
/**
 * @def END_DEFINE_ACTIVATION
 * @brief Macro for registering a derived activation class
 */
Z
zhangjinchao01 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#define END_DEFINE_ACTIVATION(ACTIVATION_NAME)                     \
  };                                                               \
  const std::string ACTIVATION_CLASS_NAME(ACTIVATION_NAME)::name = \
      #ACTIVATION_NAME;                                            \
  static InitFunction __reg_activation__##ACTIVATION_NAME([] {     \
    gActivationRegistrar.registerClass<                            \
        ACTIVATION_CLASS_NAME(ACTIVATION_NAME)>(#ACTIVATION_NAME); \
  });

/**
 * @brief The IdentityActivation class
 *
 * Do nothing when forward/backward.
 */
class IdentityActivation : public ActivationFunction {
public:
  static const std::string name;
  void forward(Argument& act) { (void)act; }
  void backward(Argument& act) { (void)act; }
  const std::string& getName() const { return name; }
};
const std::string IdentityActivation::name = "";
static InitFunction __reg_activation__identity([] {
  gActivationRegistrar.registerClass<IdentityActivation>("");
  gActivationRegistrar.registerClass<IdentityActivation>("linear");
});

/**
Q
qijun 已提交
81 82
 * @brief Sigmoid Activation
 * \f[
Z
zhangjinchao01 已提交
83
 * f(z) = \frac{1}{1+exp(-z)}
Q
qijun 已提交
84
 * \f]
Z
zhangjinchao01 已提交
85 86 87 88 89 90 91
 */
BEGIN_DEFINE_ACTIVATION(sigmoid)
void forward(Argument& act) { act.value->sigmoid(*act.value); }
void backward(Argument& act) { act.grad->sigmoidDerivative(*act.value); }
END_DEFINE_ACTIVATION(sigmoid)

/**
Q
qijun 已提交
92 93
 * @brief Softmax Activation
 * \f[
Z
zhangjinchao01 已提交
94
 * P(y=j|x) = \frac{e^{x^Tw_j}}{\sum^K_{k=1}e^{x^Tw_k}}
Q
qijun 已提交
95
 * \f]
Z
zhangjinchao01 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 */
BEGIN_DEFINE_ACTIVATION(softmax)
private:
MatrixPtr sftMaxSum_;
MatrixPtr sftMaxDot_;
MatrixPtr one_;

public:
void forward(Argument& act) { act.value->softmax(*act.value); }

void backward(Argument& act) {
  MatrixPtr outputV = act.value;
  MatrixPtr outputG = act.grad;

  if (outputG->useGpu()) {
    outputG->softmaxBackward(*outputV);
  } else {
    SetDevice device(act.deviceId);
    Matrix::resizeOrCreate(sftMaxDot_, outputG->getHeight(),
                           outputG->getWidth(),
                           /* trans */ false, useGpu(act.deviceId));
    Matrix::resizeOrCreate(sftMaxSum_, outputG->getHeight(), 1,
                           /* trans */ false, useGpu(act.deviceId));
    if (!one_ || one_->getWidth() != outputG->getWidth()) {
      Matrix::resizeOrCreate(one_, 1, outputG->getWidth(),
                             /* trans */ false, useGpu(act.deviceId));
      one_->one();
    }

    sftMaxDot_->dotMul(*outputG, *outputV);
    sftMaxSum_->colMerge(*sftMaxDot_);

    act.grad->softmaxDerivative(*act.value, *sftMaxSum_);
  }
}
END_DEFINE_ACTIVATION(softmax)

Q
qijun 已提交
133 134 135 136 137 138

/**
 * @brief Sequence_softmax Activation
 * @note Softmax on all frames of one sequence.
 * Width of frame must be one.
 */
Z
zhangjinchao01 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
BEGIN_DEFINE_ACTIVATION(sequence_softmax)
private:
ACTIVATION_CLASS_NAME(softmax) softmax_;
Argument argument_;

public:
void forward(Argument& act) {
  CHECK_EQ(act.value->getWidth(), 1UL);

  if (!argument_.value) {
    argument_.value = Matrix::create(nullptr, /* height= */ 1, 1,
                                     /* trans= */ false, useGpu(act.deviceId));
    argument_.grad = Matrix::create(nullptr, /* height= */ 1, 1,
                                    /* trans= */ false, useGpu(act.deviceId));
  }

  auto starts = act.sequenceStartPositions->getVector(useGpu(act.deviceId));
  act.value->sequenceSoftmax(*act.value, *starts);
}

void backward(Argument& act) {
  CHECK_EQ(act.grad->getWidth(), 1UL);

  size_t numSequences = act.getNumSequences();
  const int* starts = act.sequenceStartPositions->getData(false);

  for (size_t i = 0; i < numSequences; ++i) {
    // TODO(Dangqingqing) optimization for GPU
    size_t offset = starts[i];
    size_t size = starts[i + 1] - starts[i];
    argument_.value->setData(act.value->getData() + offset, 1UL, size);
    argument_.grad->setData(act.grad->getData() + offset, 1UL, size);

    softmax_.backward(argument_);
  }
}
END_DEFINE_ACTIVATION(sequence_softmax)

/**
Q
qijun 已提交
178
 * @brief Relu Activation.
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 * forward. y = max(0, z)
 *
 * derivative of relu is:
 *
 *    1 if z > 0
 *
 *    0 otherwise.
 */
BEGIN_DEFINE_ACTIVATION(relu)
void forward(Argument& act) { act.value->relu(*act.value); }

void backward(Argument& act) { act.grad->reluDerivative(*act.value); }
END_DEFINE_ACTIVATION(relu)

/**
Q
qijun 已提交
194
 * @brief BRelu Activation.
Z
zhangjinchao01 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
 *
 * forward. y = min(24, max(0, z))
 *
 * derivative of brelu is:
 *
 *    1 if 0 < z < 24
 *
 *    0 otherwise.
 *
 * TODO(yuyang18): Remove magic number 24 or make it configuable.
 */
BEGIN_DEFINE_ACTIVATION(brelu)
void forward(Argument& act) { act.value->brelu(*act.value); }

void backward(Argument& act) { act.grad->breluDerivative(*act.value); }
END_DEFINE_ACTIVATION(brelu)

/**
Q
qijun 已提交
213 214
 * @brief Tanh Activation.
 * \f[
Z
zhangjinchao01 已提交
215
 * f(z) = tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}
Q
qijun 已提交
216
 * \f]
Z
zhangjinchao01 已提交
217 218 219 220 221 222 223 224
 */
BEGIN_DEFINE_ACTIVATION(tanh)
void forward(Argument& act) { act.value->tanh(*act.value); }

void backward(Argument& act) { act.grad->tanhDerivative(*act.value); }
END_DEFINE_ACTIVATION(tanh)

/**
Q
qijun 已提交
225 226
 * @brief Scaled Tanh Activation
 * \f[
Z
zhangjinchao01 已提交
227
 * f(z) = 1.7159 * tanh(2/3*z)
Q
qijun 已提交
228
 * \f]
Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
 */
BEGIN_DEFINE_ACTIVATION(stanh)
private:
real a, b;

public:
ACTIVATION_CLASS_NAME(stanh)() : a(1.7159), b(2. / 3.) {}
void forward(Argument& act) { act.value->scaledTanh(*act.value, a, b); }

void backward(Argument& act) {
  act.grad->scaledTanhDerivative(*act.value, a, b);
}
END_DEFINE_ACTIVATION(stanh)

/**
Q
qijun 已提交
244 245
 * @brief Soft Relu Activation.
 * \f[
Z
zhangjinchao01 已提交
246
 * f(z) = ln(1+e^z)
Q
qijun 已提交
247
 * \f]
Z
zhangjinchao01 已提交
248 249 250 251 252 253 254 255
 */
BEGIN_DEFINE_ACTIVATION(softrelu)
void forward(Argument& act) { act.value->softrelu(*act.value); }

void backward(Argument& act) { act.grad->softreluDerivative(*act.value); }
END_DEFINE_ACTIVATION(softrelu)

/**
Q
qijun 已提交
256
 * @brief Abs Activation.
Z
zhangjinchao01 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
 * Forward: f(z) = abs(z)
 *
 * Derivative:
 *
 *     1   if z>0
 *
 *    -1   if z<0
 *
 *     0   if z=0
 */
BEGIN_DEFINE_ACTIVATION(abs)
void forward(Argument& act) {
  SetDevice device(act.deviceId);
  Matrix::resizeOrCreate(act.in, act.value->getHeight(), act.value->getWidth(),
                         /* trans */ false, useGpu(act.deviceId));

  act.in->copyFrom(*act.value);
  act.value->abs(*act.value);
}

void backward(Argument& act) { act.grad->absDerivative(*act.in); }
END_DEFINE_ACTIVATION(abs)

/**
Q
qijun 已提交
281 282
 * @brief Square Activation.
 * \f[
Z
zhangjinchao01 已提交
283
 * f(z) = z^2.
Q
qijun 已提交
284
 * \f]
Z
zhangjinchao01 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297
 */
BEGIN_DEFINE_ACTIVATION(square)
void forward(Argument& act) {
  SetDevice device(act.deviceId);
  Matrix::resizeOrCreate(act.in, act.value->getHeight(), act.value->getWidth(),
                         /* trans */ false, useGpu(act.deviceId));

  act.in->copyFrom(*act.value);
  act.value->square(*act.value);
}

void backward(Argument& act) { act.grad->squareDerivative(*act.in); }
END_DEFINE_ACTIVATION(square)
298

Q
qijun 已提交
299 300 301 302 303 304
/**
 * @brief Exponential Activation.
 * \f[
 * f(z) = e^z
 * \f]
 */
Z
zhangjinchao01 已提交
305 306 307 308 309 310
BEGIN_DEFINE_ACTIVATION(exponential)
void forward(Argument& act) { act.value->exp(*act.value); }

void backward(Argument& act) { act.grad->expDerivative(*act.value); }
END_DEFINE_ACTIVATION(exponential)

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/**
 * @brief Logarithm Activation.
 * \f[
 * f(z) = log(z)
 * \f]
 */
BEGIN_DEFINE_ACTIVATION(log)
void forward(Argument& act) {
  SetDevice device(act.deviceId);
  Matrix::resizeOrCreate(act.in, act.value->getHeight(), act.value->getWidth(),
                         /* trans */ false, useGpu(act.deviceId));

  act.in->copyFrom(*act.value);
  act.value->log(*act.value);
}

void backward(Argument& act) { act.grad->dotDiv(*act.grad, *act.in); }
END_DEFINE_ACTIVATION(log)

Z
zhangjinchao01 已提交
330 331 332 333
ActivationFunction* ActivationFunction::create(const std::string& type) {
  return gActivationRegistrar.createByType(type);
}

334 335 336 337 338 339 340 341 342
std::vector<std::string> ActivationFunction::getAllRegisteredTypes() {
  std::vector<std::string> types;
  gActivationRegistrar.forEachType([&](const std::string& type) {
      types.push_back(type);
    });
  return types;
}


Z
zhangjinchao01 已提交
343
}  // namespace paddle