api_custom_impl.cc 4.3 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17 18 19 20 21 22 23
#include "paddle/phi/api/lib/api_registry.h"
#include "paddle/phi/api/lib/api_utils.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
24 25 26
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
27
#include "paddle/phi/infermeta/unary.h"
28

29
#include "glog/logging.h"
30

31 32 33
namespace paddle {
namespace experimental {

34
Tensor copy_to_impl(const Tensor& x, Backend backend, bool blocking) {
35 36
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
  kernel_key_set.backend_set = kernel_key_set.backend_set | BackendSet(backend);
37
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
38
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
39 40
      "copy", kernel_key);

41 42
  VLOG(6) << "copy API kernel key: " << kernel_key;
  VLOG(6) << "copy API kernel: " << kernel;
43 44 45

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

46
  auto dense_x = TensorToDenseTensor(x);
47 48

  Tensor out;
49 50 51 52 53 54 55 56 57
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::UnchangedInferMeta(*dense_x, &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    phi::Place,
                                    bool,
                                    phi::DenseTensor*);
58

59 60 61
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(
      *dev_ctx, *dense_x, phi::TransToPtenPlace(backend), blocking, kernel_out);
62 63 64 65

  return out;
}

66 67 68 69
std::vector<Tensor> split_impl(const Tensor& x,
                               const ScalarArray& num_or_sections,
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
70
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
71 72 73 74

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
75

76
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
      "split", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
  if (num_or_sections.GetData().size() == 1) {
    out_number = num_or_sections.GetData()[0];
  } else {
    out_number = num_or_sections.GetData().size();
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
96
  std::vector<phi::MetaTensor> meta_outs;
C
chentianyu03 已提交
97 98 99 100
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
  }

101
  phi::SplitInferMeta(
C
chentianyu03 已提交
102 103 104
      MakeMetaTensor(*dense_x), num_or_sections, axis, &meta_outs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
105 106 107 108
                                    const phi::DenseTensor&,
                                    const phi::ScalarArray&,
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
109 110 111
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
112 113
               phi::ScalarArray(num_or_sections),
               phi::Scalar(axis),
C
chentianyu03 已提交
114 115 116 117
               dense_outs);

  return out;
}
118

119 120
}  // namespace experimental
}  // namespace paddle