conv_miopen_helper.h 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/framework/eigen.h"
18
#include "paddle/fluid/operators/conv_base_helper.h"
19 20 21 22

namespace paddle {
namespace operators {

23
using ConvArgs = ConvArgsBase<miopenHandle_t, miopenDataType_t>;
24 25

template <typename DeviceContext, typename T, size_t D>
H
hong 已提交
26
static void RemovePaddingSlice(const phi::GPUContext& context,
27 28
                               const Tensor* input,
                               Tensor* out,
29 30
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
H
hong 已提交
31
  auto& place = *context.eigen_device();
32 33 34 35 36 37 38 39 40 41
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  for (size_t i = 0; i < axes.size(); ++i) {
42
    int start = starts[i];
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
  out_t.device(place) = in_t.slice(offsets, extents);
}

template <>
struct SearchAlgorithm<miopenConvFwdAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvFwdAlgorithm_t;

  template <typename T>
65 66 67 68
  static algo_t Find(const ConvArgs& args,
                     bool exhaustive_search,
                     bool deterministic,
                     size_t workspace_size,
H
hong 已提交
69
                     const phi::GPUContext& ctx) {
70 71
    algo_t algo;

H
hong 已提交
72
    auto workspace_handle = ctx.cudnn_workspace_handle();
73

74 75 76
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
77
      PADDLE_ENFORCE_GPU_SUCCESS(
78
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
79 80 81 82 83 84 85 86 87 88 89 90 91 92
              args.handle,
              args.idesc.desc(),
              args.x->data<T>(),
              args.wdesc.desc(),
              args.w->data<T>(),
              args.cdesc.desc(),
              args.odesc.desc(),
              const_cast<T*>(args.o->data<T>()),
              kNUM_CUDNN_FWD_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
93 94
    };

R
ronnywang 已提交
95 96
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.fwd_algo;
97 98 99 100
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

101
  static size_t GetWorkspaceSize(const ConvArgs& args) {
102
    size_t workspace_size = 0;
103
    PADDLE_ENFORCE_GPU_SUCCESS(
104
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
105 106 107 108 109 110
            args.handle,
            args.wdesc.desc(),
            args.idesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            &workspace_size));
111 112 113 114 115 116 117 118 119 120
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<miopenConvBwdDataAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvBwdDataAlgorithm_t;

  template <typename T>
121 122 123 124
  static algo_t Find(const ConvArgs& args,
                     bool exhaustive_search,
                     bool deterministic,
                     size_t workspace_size,
H
hong 已提交
125
                     const phi::GPUContext& ctx) {
126 127
    algo_t algo;

H
hong 已提交
128
    auto workspace_handle = ctx.cudnn_workspace_handle();
129

130 131 132
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
133
      PADDLE_ENFORCE_GPU_SUCCESS(
134
          platform::dynload::miopenFindConvolutionBackwardDataAlgorithm(
135 136 137 138 139 140 141 142 143 144 145 146 147 148
              args.handle,
              args.odesc.desc(),
              args.o->data<T>(),
              args.wdesc.desc(),
              args.w->data<T>(),
              args.cdesc.desc(),
              args.idesc.desc(),
              const_cast<T*>(args.x->data<T>()),
              kNUM_CUDNN_BWD_DATA_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
149 150
    };

R
ronnywang 已提交
151 152
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.bwd_data_algo;
153 154 155 156
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

157
  static size_t GetWorkspaceSize(const ConvArgs& args) {
158
    size_t workspace_size = 0;
159
    PADDLE_ENFORCE_GPU_SUCCESS(
160
        platform::dynload::miopenConvolutionBackwardDataGetWorkSpaceSize(
161 162 163 164 165 166
            args.handle,
            args.odesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            &workspace_size));
167 168 169 170 171 172 173 174 175 176
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvBwdWeightsAlgorithm_t;

  template <typename T>
177 178 179 180
  static algo_t Find(const ConvArgs& args,
                     bool exhaustive_search,
                     bool deterministic,
                     size_t workspace_size,
H
hong 已提交
181
                     const phi::GPUContext& ctx) {
182 183
    algo_t algo;

H
hong 已提交
184
    auto workspace_handle = ctx.cudnn_workspace_handle();
185 186 187 188

    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
189
      PADDLE_ENFORCE_GPU_SUCCESS(
190
          platform::dynload::miopenFindConvolutionBackwardWeightsAlgorithm(
191 192 193 194 195 196 197 198 199 200 201 202 203 204
              args.handle,
              args.odesc.desc(),
              args.o->data<T>(),
              args.idesc.desc(),
              args.x->data<T>(),
              args.cdesc.desc(),
              args.wdesc.desc(),
              const_cast<T*>(args.w->data<T>()),
              kNUM_CUDNN_BWD_FILTER_ALGS,
              &find_count,
              &find_result,
              cudnn_workspace_ptr,
              workspace_size,
              false));
205 206
    };

R
ronnywang 已提交
207 208
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.bwd_weights_algo;
209 210 211 212
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

213
  static size_t GetWorkspaceSize(const ConvArgs& args) {
214
    size_t workspace_size = 0;
215
    PADDLE_ENFORCE_GPU_SUCCESS(
216
        platform::dynload::miopenConvolutionBackwardWeightsGetWorkSpaceSize(
217 218 219 220 221 222
            args.handle,
            args.odesc.desc(),
            args.idesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            &workspace_size));
223 224 225 226 227 228
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle