new_op_en.md 15.2 KB
Newer Older
1 2
# How to write a new operator

M
Mimee 已提交
3
 - [Background](#background)
T
tensor-tang 已提交
4 5
 - [Implementing C++ Types](#implementing-c-types)
   - [Defining ProtoMaker](#defining-protomaker)
M
Mimee 已提交
6
   - [Defining Operator](#defining-operator)
Q
Qiao Longfei 已提交
7 8
   - [Defining OpKernel](#defining-opkernel)
   - [Registering Operator and OpKernel](#registering-operator-and-opkernel)
M
Mimee 已提交
9 10 11 12 13 14 15
   - [Compilation](#compilation)
 - [Python Binding](#python-binding)
 - [Unit Tests](#unit-tests)
   - [Testing Forward Operators](#testing-forward-operators)
   - [Testing Backward Operators](#testing-backward-operators)
   - [Compiling and Running](#compiling-and-running)
 - [Remarks](#remarks)
16 17 18 19 20
## Background

Here are the base types needed. For details, please refer to the design docs.

- `class OpProtoAndCheckerMaker`: Describes an Operator's input, output, attributes and description, mainly used to interface with Python API.
Q
Qiao Longfei 已提交
21 22 23 24
- `framework::OperatorBase`: Operator (Op)base class.
- `framework::OpKernel`: Base class for Op computation kernel.
- `framework::OperatorWithKernel`: Inherited from OperatorBase, describing an operator with computation kernels.

25

Q
Qiao Longfei 已提交
26
Operators can be categorized into two groups: operator with kernel(s) and operator without kernel(s). An operator with kernel(s) inherits from `OperatorWithKernel` while the one without kernel(s) inherits from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information:
27 28 29 30 31 32


 Information           | Where is it defined
--------------  | :----------------------
OpProtoMake definition  | `.cc`files, Backward Op does not need an OpProtoMake interface.
Op definition           | `.cc` files
Q
QI JUN 已提交
33 34
Kernel implementation       | The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files.
Registering the Op           | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation.
35 36


Q
Qiao Longfei 已提交
37
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.**
38 39 40 41 42 43 44 45


Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc), as an example to introduce the writing of an Operator with Kernel.


## Implementing C++ Types


T
tensor-tang 已提交
46
### Defining ProtoMaker
47 48 49 50 51 52 53 54

Matrix Multiplication can be written as $Out = X * Y$, meaning that the operation consists of two inputs and pne output.

First, define `ProtoMaker` to describe the Operator's input, output, and additional comments:

```cpp
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
55
  MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(Tensor), 2D tensor of size (M x K)");
    AddInput("Y", "(Tensor), 2D tensor of size (K x N)");
    AddOutput("Out", "(Tensor), 2D tensor of size (M x N)");
    AddComment(R"DOC(
Two Element Mul Operator.
The equation is: Out = X * Y
)DOC");
  }
};
```

[`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)is inherited from`framework::OpProtoAndCheckerMaker`, consisting of 2 variables in the constructor:

   - `framework::OpProto` stores Operator input and variable attribute, used for generating Python API interfaces.
   - `framework::OpAttrChecker` is used to validate variable attributes.

The constructor utilizes `AddInput`, `AddOutput`, and `AddComment`, so that the corresponding information will be added to `OpProto`.

The code above adds two inputs `X` and `Y` to `MulOp`, an output `Out`, and their corresponding descriptions, in accordance to Paddle's [naming convention](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md).


An additional example [`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37) is implemented as follows:

```cpp
template <typename AttrType>
class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
84
  ScaleOpMaker(OpProto *proto, OpAttrChecker *op_checker)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input tensor of scale operator.").NotInGradient();
    AddOutput("Out", "The output tensor of scale operator.").NotInGradient();
    AddComment(R"DOC(Scale operator
The equation is: Out = scale*X
)DOC");
    AddAttr<AttrType>("scale", "scale of scale operator.").SetDefault(1.0);
  }
};
```

There are two changes in this example:

- `AddInput("X","...").NotInGradient()` expresses that input `X` is not involved in `ScaleOp`'s corresponding computation. If an input to an operator is not participating in back-propagation, please explicitly set `.NotInGradient()`.

- `AddAttr<AttrType>("scale", "...").SetDefault(1.0);`  adds `scale`constant as an attribute, and sets the default value to 1.0.


T
tensor-tang 已提交
103
### Defining Operator
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

The following code defines the interface for MulOp:

```cpp
class MulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    auto dim0 = ctx.Input<Tensor>("X")->dims();
    auto dim1 = ctx.Input<Tensor>("Y")->dims();
    PADDLE_ENFORCE_EQ(dim0.size(), 2,
                      "input X(%s) should be a tensor with 2 dims, a matrix",
                      ctx.op_.Input("X"));
    PADDLE_ENFORCE_EQ(dim1.size(), 2,
                      "input Y(%s) should be a tensor with 2 dims, a matrix",
                      ctx.op_.Input("Y"));
    PADDLE_ENFORCE_EQ(
        dim0[1], dim1[0],
        "First matrix's width must be equal with second matrix's height.");
    ctx.Output<Tensor>("Out")->Resize({dim0[0], dim1[1]});
  }
};
```

[`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22) is inherited from `OperatorWithKernel`. Its `public` member

```cpp
using framework::OperatorWithKernel::OperatorWithKernel;
```

expresses an operator constructor using base class `OperatorWithKernel`, alternatively written as

```cpp
MulOp(const std::string &type, const framework::VariableNameMap &inputs,
      const framework::VariableNameMap &outputs,
      const framework::AttributeMap &attrs)
  : OperatorWithKernel(type, inputs, outputs, attrs) {}
```

`InferShape` interface needs to be re-written.`InferShape` is a constant method and cannot modify Op's member variables, its constant member `const framework::InferShapeContext &ctx` can be used to extract input, output, and attributes. It functions to

  - 1). validate and error out early: it checks input data dimensions and types.
  - 2). configures the tensor shape in the output.

Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, which also include the registration methods introduced later.
M
Mimee 已提交
151

T
tensor-tang 已提交
152
### Defining OpKernel
M
Mimee 已提交
153 154 155

`MulKernel` inherits `framework::OpKernel`, which includes the following templates:

Q
QI JUN 已提交
156
- `typename  DeviceContext` denotes device context type. When different devices, namely the CPUDeviceContext and the CUDADeviceContext, share the same kernel, this template needs to be added. If they don't share kernels, this must not be added. An example of a non-sharing kernel is [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43).
M
Mimee 已提交
157 158 159 160

- `typename T` denotes data type, such as `float` or `double`.

`MulKernel` types need to rewrite the interface for `Compute`.
Q
Qiao Longfei 已提交
161 162

- `Compute` takes one input parameter: `const framework::ExecutionContext& context`.
M
Mimee 已提交
163 164 165 166 167 168
- Compared with `InferShapeContext`, `ExecutionContext` includes device types, and can similarly extract input, output, and attribute variables.
- `Compute` implements the computation logics of an `OpKernel`.

`MulKernel`'s implementation of `Compute` is as follows:

  ```cpp
Q
QI JUN 已提交
169
  template <typename DeviceContext, typename T>
M
Mimee 已提交
170 171 172 173 174 175 176
  class MulKernel : public framework::OpKernel {
  public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<Tensor>("X");
    auto* Y = context.Input<Tensor>("Y");
    auto* Z = context.Output<Tensor>("Out");
    Z->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
177 178
    auto& device_context = context.template device_context<DeviceContext>();
    math::matmul<DeviceContext, T>(*X, false, *Y, false, 1, Z, 0, device_context);
M
Mimee 已提交
179 180 181 182
  }
  };
  ```

Q
Qiao Longfei 已提交
183
Note that **different devices (CPU, CUDA)share one Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions can support both devices.**
M
Mimee 已提交
184

Q
QI JUN 已提交
185
`MulOp`'s CPU and CUDA share the same `Kernel`. A non-sharing  `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43).
M
Mimee 已提交
186

187
To ease the writing of `OpKernel` compute, and for reusing code cross-device, [`Eigen-unsupported Tensor`](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md?fileviewer=file-view-default) module is used to implement `Compute` interface. To learn about how the Eigen library is used in PaddlePaddle, please see [usage document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md).
M
Mimee 已提交
188 189 190 191 192 193


This concludes the forward implementation of an operator. Next its operation and kernel need to be registered in a `.cc` file.

The definition of its corresponding backward operator, if applicable, is similar to that of an forward operator. **Note that a backward operator does not include a `ProtoMaker`**.

Q
Qiao Longfei 已提交
194
### Registering Operator and OpKernel
M
Mimee 已提交
195 196 197 198 199 200

- In `.cc` files, register forward and backward operator classes and the CPU kernel.

    ```cpp
    namespace ops = paddle::operators;
    REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad);
Q
Qiao Longfei 已提交
201

Q
QI JUN 已提交
202
    REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>);
M
Mimee 已提交
203
    REGISTER_OP_CPU_KERNEL(mul_grad,
Q
QI JUN 已提交
204
                  ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>);
M
Mimee 已提交
205 206 207 208 209 210
    ```

   In that code block,

    - `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`.
    - `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient.
Q
Qiao Longfei 已提交
211

K
kexinzhao 已提交
212
    - `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`.
M
Mimee 已提交
213 214


Q
QI JUN 已提交
215 216
- Registering CUDA Kernel in `.cu` files
    - Note that if CUDA Kernel is implemented using the `Eigen unsupported` module, then on top of `.cu`, a macro definition `#define EIGEN_USE_GPU` is needed, such as
M
Mimee 已提交
217 218 219 220 221 222

    ```cpp
    // if use Eigen unsupported module before include head files
    #define EIGEN_USE_GPU

    namespace ops = paddle::operators;
Q
QI JUN 已提交
223 224 225
    REGISTER_OP_CUDA_KERNEL(mul, ops::MulKernel<paddle::platform::CUDADeviceContext, float>);
    REGISTER_OP_CUDA_KERNEL(mul_grad,
                           ops::MulGradKernel<paddle::platform::CUDADeviceContext, float>);
M
Mimee 已提交
226 227
    ```

T
tensor-tang 已提交
228
### Compilation
M
Mimee 已提交
229 230 231 232

Run the following commands to compile.

```
Q
Qiao Longfei 已提交
233
# maybe you need to rerun cmake
M
Mimee 已提交
234 235 236 237 238 239 240 241 242
make mul_op
```

## Python Binding

The system will automatically bind to Python and link it to a generated library.

## Unit Tests

M
Mimee 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
Unit tests for an operator include

1. comparing a forward operator's implementations on different devices,

2. comparing a backward operator's implementation on different devices, and

3. a scaling test for the backward operator.

Here, we introduce the [unit tests for `MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py).

### Testing Forward Operators

A forward operator unit test inherits `unittest.TestCase` and defines metaclass `__metaclass__ = OpTestMeta`. More concrete tests are performed in `OpTestMeta`. Testing a forward operator requires the following:

1. Defining input, output and relevant attributes in `setUp` method.

2. Generating random input data.

Q
QI JUN 已提交
261 262 263
3. Implementing the same computation logic in a Python script.

4. Call check gradient function to check the backward operator.
M
Mimee 已提交
264 265 266 267

  ```python
  import unittest
  import numpy as np
Q
QI JUN 已提交
268
  from op_test import OpTest
M
Mimee 已提交
269 270


Q
QI JUN 已提交
271
  class TestMulOp(OpTest):
M
Mimee 已提交
272
      def setUp(self):
Q
QI JUN 已提交
273
          self.op_type = "mul"
M
Mimee 已提交
274 275 276 277 278 279
          self.inputs = {
              'X': np.random.random((32, 84)).astype("float32"),
              'Y': np.random.random((84, 100)).astype("float32")
          }
          self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}

Q
QI JUN 已提交
280 281 282 283 284
      def test_check_output(self):
          self.check_output()
          
      def test_check_grad_normal(self):
          self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
M
Mimee 已提交
285

Q
QI JUN 已提交
286 287 288
      def test_check_grad_ingore_x(self):
          self.check_grad(
              ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X"))
M
Mimee 已提交
289

Q
QI JUN 已提交
290 291 292
      def test_check_grad_ingore_y(self):
          self.check_grad(
              ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y'))
T
tensor-tang 已提交
293
  ```
Q
QI JUN 已提交
294
Get its output, and compare it with the forward operator's own output.
M
Mimee 已提交
295

Q
QI JUN 已提交
296
The code above first loads required packages. In addition, we have
M
Mimee 已提交
297

Q
QI JUN 已提交
298 299 300
- `self.op_type = "mul" ` defines the type that is identical to what the operator's registered type.
- `self.inputs` defines input, with type `numpy.array` and initializes it.
- `self.outputs` defines output and completes the same operator computation in the Python script, and returns its result from the Python script.
M
Mimee 已提交
301

T
tensor-tang 已提交
302 303
### Testing Backward Operators

Q
QI JUN 已提交
304
Some key points in checking gradient above include:
M
Mimee 已提交
305 306

- `test_normal` calls `check_grad` to validate scaling tests' correctness and stability through numeric methods.
307 308 309 310
  - The first variable `["X", "Y"]` appoints `X` and `Y` to be scale tested.
  - The second variable `"Out"` points to the network's final output target `Out`.
  - The third variable `max_relative_error` points to the maximum relative tolerance error during scaling tests.
- `test_check_grad_ingore_x` and `test_check_grad_ingore_y`branches test the cases where there is only one scaling input.
M
Mimee 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

### Compiling and Running


Any new unit testing file of the format `test_*.py`  added to the director `python/paddle/v2/framework/tests` is automatically added to the project to compile.

Note that **unlike the compile test for Ops, running unit tests requires compiling the entire project** and requires compiling with flag `WITH_TESTING` on i.e. `cmake paddle_dir -DWITH_TESTING=ON`.

After successfully compiling the project, run the following command to run unit tests:

```bash
make test ARGS="-R test_mul_op -V"
```

Or,

```bash
ctest -R test_mul_op
```

## Remarks

- Every `*_op.h` (if applicable), `*_op.cc`, and `*_op.cu` (if applicable) must be created for a unique Op. Compiling will fail if multiple operators are included per file.
- The type with which an operator is registered needs to be identical to the Op's name. Registering `REGISTER_OP(B, ...)` in `A_op.cc` will cause unit testing failures.
Q
QI JUN 已提交
335
- If the operator does not implement a CUDA kernel, please refrain from creating an empty `*_op.cu` file, or else unit tests will fail.
M
Mimee 已提交
336
- If multiple operators rely on some shared methods, a file NOT named `*_op.*` can be created to store them, such as `gather.h`.