elementwise_mul_op.h 10.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16
#include <string>
W
Wu Yi 已提交
17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
20
#include "paddle/fluid/operators/math/blas.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
class ElementwiseMulOp : public ElementwiseOp {
 public:
  using Tensor = framework::Tensor;
  using ElementwiseOp::ElementwiseOp;

#ifdef PADDLE_WITH_MKLDNN
  static bool AreDimsAndFormatCorrect(const framework::ExecutionContext& ctx,
                                      int simd_width,
                                      mkldnn::memory::format x_format) {
    using Tensor = framework::Tensor;
    using paddle::framework::vectorize;
    using mkldnn::memory;
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto x_dims = vectorize(x->dims());
    const bool are_dims_divisable = !(x_dims[1] % simd_width);
    const bool is_x_format_correct = x->format() == x_format;
    const bool is_y_format_correct = vectorize(y->dims()).size() == 2;
    return are_dims_divisable && is_x_format_correct && is_y_format_correct;
  }
#endif

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    using mkldnn::memory;
    if (platform::CanMKLDNNBeUsed(ctx)) {
      bool can_use_avx512_kernel =
          platform::MayIUse(platform::avx512f) &&
          AreDimsAndFormatCorrect(ctx, 16, memory::format::nChw16c);
      if (can_use_avx512_kernel) {
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
      }
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

69 70 71 72 73
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
74 75 76 77 78 79 80
  if (x->numel() >= y->numel()) {
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MulFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseMulFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseMulFunctor<T>(), z);
  }
81
}
82

83 84 85 86 87 88
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseMul {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
};
89

Q
QI JUN 已提交
90
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
91
class ElementwiseMulKernel : public framework::OpKernel<T> {
92 93
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
94 95 96
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
                   "Cannot get input Variable X, variable name = %s",
H
hong 已提交
97
                   ctx.InputName("X"));
C
chengduo 已提交
98
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    framework::Tensor x, *z;
    if (x_var->IsType<framework::SelectedRows>()) {
      PADDLE_ENFORCE(y->dims().size() == 1 && y->dims()[0] == 1,
                     "For elementwise_op, if X is Sparse, Y must be scalar.");
      auto& x_sele = x_var->Get<framework::SelectedRows>();
      auto out_sele = ctx.Output<framework::SelectedRows>("Out");
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
      z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    } else if (x_var->IsType<framework::LoDTensor>()) {
      x = x_var->Get<framework::LoDTensor>();
      z = ctx.Output<framework::LoDTensor>("Out");
    } else {
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
S
sneaxiy 已提交
117
                   framework::ToTypeName(x_var->Type()));
C
chengduo 已提交
118
    }
C
chengduoZH 已提交
119 120

    z->mutable_data<T>(ctx.GetPlace());
C
chengduo 已提交
121
    if (x.numel() == y->numel()) {
122 123
      SameDimsElemwiseMul<DeviceContext, T> same_dims_mul;
      same_dims_mul(ctx, &x, y, z);
124
    } else {
C
chengduo 已提交
125
      default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
126
    }
G
gongweibao 已提交
127 128
  }
};
129

G
gongweibao 已提交
130
template <typename T>
C
chengduoZH 已提交
131
struct MulGradDX {
C
chengduoZH 已提交
132
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
133 134
};

G
gongweibao 已提交
135
template <typename T>
C
chengduoZH 已提交
136
struct MulGradDY {
C
chengduoZH 已提交
137
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
138
};
C
chengduoZH 已提交
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
165
template <typename DeviceContext, typename T>
166
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
167 168
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
169
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
170 171 172 173 174
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
175
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
176 177 178
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
179 180 181 182 183 184 185
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_mul_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(),
          MulGradDY<T>());
    }
G
gongweibao 已提交
186 187
  }
};
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

211 212
    // dx = dout * ddy
    // dy = dout * ddx
213
    // ddout = ddx * y + x * ddy
214 215 216 217 218 219
    // change computation sequence to save memory, so ddout can inplace ddx and
    // dx can be used as 'tmp' tensor
    // (1) dx = x * ddy
    // (2) dy = dout * ddx
    // (3) ddout = ddx * y
    // (4) ddout = ddout + dx
220
    // (5) dx = dout * ddy
221
    if (ddout) {
222 223 224
      int axis = ctx.Attr<int>("axis");
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
      // size(ddout) > size(ddx), ddout can't use memory of ddx using inplace
      if (ddout->numel() > ddx->numel()) {
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX<T>(),
            MulGradDY<T>());

        Tensor ddout_tmp;
        ddout_tmp.mutable_data<T>(ddout->dims(), ctx.GetPlace());

        default_elementwise_mul<DeviceContext, T>(ctx, y, &ddx_safe, ddout);
        default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, x,
                                                  &ddout_tmp);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
      } else {
        // use dx to save memory, other than alloc tmp tensor
        Tensor* ddout_tmp = dx;

        default_elementwise_mul<DeviceContext, T>(ctx, x, &ddy_safe, ddout_tmp);
        // NOTE: in the following ElemwiseGradCompute, for the
        // first output tensor is nullptr, the branch to calculate first
        // output tensor will not be activated, DivGradDx function will not
        // be called and can be ignored, the first branch has little effect
        // on running speed.
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy,
            MulGradDX<T>(), MulGradDY<T>());
        default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, y, ddout);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(*ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
        default_elementwise_mul<DeviceContext, T>(ctx, dout, &ddy_safe, dx);
      }
261 262 263 264
    }
  }
};

265 266
}  // namespace operators
}  // namespace paddle