operator.cc 41.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
33

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
35
DECLARE_bool(check_nan_inf);
Q
Qiao Longfei 已提交
36
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
37 38 39
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
40

Q
Qiao Longfei 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47 48 49
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
50

Q
qiaolongfei 已提交
51 52
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
53
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
54
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
55
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
56 57 58 59 60
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

61 62
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
63
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
64 65
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
66 67
  }

M
minqiyang 已提交
68 69 70 71 72 73 74 75 76
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
77 78 79 80 81
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
82 83 84 85 86 87
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
88 89 90 91 92
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
93

M
minqiyang 已提交
94 95 96
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
97 98
      return "";
    }
Y
Yu Yang 已提交
99
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
100
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
101 102 103 104
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
105
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
106
    }
D
dzhwinter 已提交
107 108 109 110 111
  } else {
    return "";
  }
}

112 113 114 115 116 117
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
118 119
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
120 121 122 123 124
  }

  return -1;
}

125
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
126 127 128 129 130 131 132
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
133 134 135
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
136 137 138 139 140
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
141 142 143 144 145
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
146
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
147 148 149 150 151 152
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
153
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
154 155 156 157 158 159
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

160
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
161 162 163
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
164
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
165
      PADDLE_THROW("Cannot run operator on place %s", place);
166
#else
P
peizhilin 已提交
167 168
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
169
#endif
P
peizhilin 已提交
170
    }
P
peizhilin 已提交
171

P
peizhilin 已提交
172 173 174 175 176
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
177
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
178 179 180 181 182
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
183
  } catch (platform::EnforceNotMet& exception) {
184
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
185
    throw std::move(exception);
186 187 188 189 190 191
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
192
  } catch (...) {
193
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
194
    std::rethrow_exception(std::current_exception());
195
  }
196 197
}

198
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
199
  return inputs_.find(name) != inputs_.end();
200 201
}

202
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
203
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
204
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
205 206
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
207
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
208 209
}

Y
Yu Yang 已提交
210 211
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
212
  auto it = inputs_.find(name);
213 214
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
215
  return it->second;
Y
Yan Chunwei 已提交
216 217
}

218
bool OperatorBase::HasOutputs(const std::string& name) const {
219
  if (outputs_.find(name) != outputs_.end()) {
220 221 222 223 224 225
    return true;
  } else {
    return false;
  }
}

226
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
227
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
228
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
229 230
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
231
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
232 233
}

Y
Yu Yang 已提交
234 235
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
236
  auto it = outputs_.find(name);
237 238
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
239
  return it->second;
Y
Yan Chunwei 已提交
240 241
}

242
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
243
  std::stringstream ss;
Y
Yu Yang 已提交
244
  ss << "Op(" << type_ << "), inputs:{";
245 246 247 248 249 250 251

  std::unordered_set<std::string> no_need_buffer_vars;
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
        Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs());
  }

Y
Yu Yang 已提交
252 253
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
254
    bool is_no_need_buffer_var = (no_need_buffer_vars.count(input.first) > 0);
Y
Yu Yang 已提交
255 256
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
257 258
      auto var_name = input.second[i];
      ss << var_name;
259
      if (scope) {
Q
Qiao Longfei 已提交
260 261 262 263 264 265 266
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
267 268 269
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
270
          ss << ":" << dtype;
271 272
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
273
        }
274
      }
Y
Yu Yang 已提交
275 276 277
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
278
    }
Y
Yu Yang 已提交
279
    ss << "]";
Y
Yu Yang 已提交
280 281
    ++it;
    if (it != inputs_.end()) {
282 283
      ss << ", ";
    }
Q
Qiao Longfei 已提交
284
  }
Y
Yu Yang 已提交
285
  ss << "}, outputs:{";
Y
Yu Yang 已提交
286 287
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
288 289
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
290 291
      auto var_name = output.second[i];
      ss << var_name;
292
      if (scope) {
Q
Qiao Longfei 已提交
293 294 295 296 297 298 299
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
300 301
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
302 303
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
304
        }
305
      }
Y
Yu Yang 已提交
306 307 308
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
309
    }
Y
Yu Yang 已提交
310
    ss << "]";
Y
Yu Yang 已提交
311 312
    ++it;
    if (it != outputs_.end()) {
313 314
      ss << ", ";
    }
Q
Qiao Longfei 已提交
315
  }
Y
Yu Yang 已提交
316
  ss << "}.";
Q
Qiao Longfei 已提交
317 318 319
  return ss.str();
}

Y
Yu Yang 已提交
320
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
321 322
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
323
                           const AttributeMap& attrs)
S
sneaxiy 已提交
324 325 326 327 328 329
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
330 331
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
332
}
333

Q
qijun 已提交
334 335
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
336
  for (auto& o : inputs_) {
Q
qijun 已提交
337 338 339 340 341 342
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
343 344 345 346 347 348 349 350 351 352
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
353
  auto& info = Info();
Y
Yu Yang 已提交
354 355

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
356
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
357 358 359 360 361 362 363 364 365
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
366 367
}

368
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
369
  if (info_ == nullptr || info_->proto_ == nullptr) return;
370

S
sneaxiy 已提交
371
  for (auto& in : info_->Proto().inputs()) {
372 373 374 375
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
376 377
  }

S
sneaxiy 已提交
378
  for (auto& out : info_->Proto().outputs()) {
379 380 381 382 383
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
400
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
401
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
402 403
}

C
chengduo 已提交
404
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
405 406 407 408
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
409
  } else {
Y
Yang Yang 已提交
410
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
411
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
412 413 414
  }
}

C
chengduo 已提交
415
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
416
  if (var->IsType<LoDTensor>()) {
417
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
418
  } else if (var->IsType<SelectedRows>()) {
419
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
420
  } else {
Y
Yang Yang 已提交
421
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
422
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
423 424 425
  }
}

426
bool ExecutionContext::HasInput(const std::string& name) const {
427
  auto* var = InputVar(name);
428 429 430 431
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
432
  auto* var = OutputVar(name);
433 434 435
  return var != nullptr;
}

X
Xin Pan 已提交
436 437 438 439 440 441 442 443 444 445
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
446
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
447 448 449 450 451 452 453 454 455
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

456
template <>
457
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
458
  return Input<LoDTensor>(name);
459 460 461
}

template <>
462
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
463
    const std::string& name) const {
X
Xin Pan 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
477
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
478 479 480 481 482
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

483
template <>
484
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
485
  return Output<LoDTensor>(name);
486 487 488
}

template <>
489
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
490
    const std::string& name) const {
491 492 493 494 495
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
496
  std::vector<Tensor*> res;
497 498 499 500 501
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
502
                 });
503 504 505
  return res;
}

Y
Yu Yang 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

521 522
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
523 524
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
525
      : op_(op), ctx_(ctx) {}
526 527

  bool HasInput(const std::string& name) const override {
528
    // has only one input
X
Xin Pan 已提交
529
    const auto& ins = ctx_.inputs;
530 531
    auto it = ins.find(name);
    if (it == ins.end()) {
532 533
      return false;
    }
534
    const auto& in = it->second;
X
Xin Pan 已提交
535
    if (in.size() == 0) return false;
T
tensor-tang 已提交
536
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
537
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
538
    return in[0] != nullptr;
539 540 541
  }

  bool HasOutput(const std::string& name) const override {
542
    // has only one output
X
Xin Pan 已提交
543
    const auto& outs = ctx_.outputs;
544 545
    auto it = outs.find(name);
    if (it == outs.end()) {
546 547
      return false;
    }
548
    const auto& out = it->second;
X
Xin Pan 已提交
549
    if (out.size() == 0) {
550 551
      return false;
    }
T
tensor-tang 已提交
552 553
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
554
    return out[0] != nullptr;
555 556 557
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
558 559
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
560
    if (it == ins.end() || it->second.empty()) {
561 562
      return false;
    }
X
Xin Pan 已提交
563 564
    for (auto& input : it->second) {
      if (input == nullptr) {
565 566 567 568 569 570 571
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
572 573
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
574
    if (it == outs.end() || it->second.empty()) {
575 576
      return false;
    }
X
Xin Pan 已提交
577 578
    for (auto& output : it->second) {
      if (output == nullptr) {
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

597 598
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
599 600 601 602 603 604 605 606 607
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
608 609

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
610
                   "The type of %s and %s is not the same.", in, out);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
629 630
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
631 632 633 634 635 636 637 638
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
639
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
640
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
641 642
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
643
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
644 645
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
646

M
mozga-intel 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
666 667
  }

C
chengduo 已提交
668 669 670 671 672
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

673 674
  bool IsRuntime() const override { return true; }

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
707 708 709 710 711 712 713 714 715 716
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

731
 protected:
X
Xin Pan 已提交
732
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
733
    PADDLE_ENFORCE_NOT_NULL(var);
734 735 736 737 738
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
739
      PADDLE_THROW(
X
Xin Pan 已提交
740
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
741
          "type_id is %s.",
S
sneaxiy 已提交
742
          ToTypeName(var->Type()));
F
fengjiayi 已提交
743 744 745
    }
  }

X
Xin Pan 已提交
746 747 748 749 750 751 752 753
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
754
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
755
    PADDLE_THROW("Only compile time support this method");
756 757
  }

X
Xin Pan 已提交
758
  void SetDim(Variable* var, const DDim& dim) {
759 760 761 762 763
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
764
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
765
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
766 767 768 769 770 771 772 773 774 775 776 777
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
778 779 780
    }
  }

F
fengjiayi 已提交
781 782
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
783
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
784 785
  }

X
Xin Pan 已提交
786 787 788 789 790 791 792 793 794 795 796
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
797 798 799
    return ToVarType(var->Type());
  }

800 801 802 803 804 805 806 807 808 809 810 811 812 813
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
814 815
  }

816
  const OperatorBase& op_;
X
Xin Pan 已提交
817
  const RuntimeContext& ctx_;
818 819
};

820 821
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
822 823 824 825
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
826 827
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
828 829 830
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
831
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
832
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
833
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
834 835
}

B
baojun-nervana 已提交
836
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
837 838 839
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
840 841 842
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
843 844 845 846 847 848 849 850 851 852
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
853 854
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
855 856
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
857 858 859
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
860
      HasAttr(kAllKernelsMustComputeRuntimeShape))
861 862
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
863 864 865 866
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
867 868 869 870 871 872
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
873 874 875 876 877 878 879 880
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
881
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
882
  auto* dev_ctx = pool.Get(place);
883

884
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
885
    ChooseKernel(*runtime_ctx, scope, place);
886 887
  }

L
Liu Yiqun 已提交
888
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
889

Y
yuyang18 已提交
890 891
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
892
  auto* transfer_scope =
893
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
894

Y
yuyang18 已提交
895 896 897 898
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

899 900
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
901
  }
Q
QI JUN 已提交
902

903
  if (!all_kernels_must_compute_runtime_shape_) {
L
luotao1 已提交
904
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
905 906
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
907 908
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
909 910
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
911

Y
yuyang18 已提交
912 913 914
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
915 916
  }

D
dzhwinter 已提交
917
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
918
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
919
    dev_ctx->Wait();
D
dzhwinter 已提交
920
  }
C
chengduoZH 已提交
921

P
pkpk 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
941 942
  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
943
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
944 945
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
946
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
947
      } else if (var->IsType<framework::SelectedRows>()) {
948 949
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
950 951 952
      }
    }
  }
953 954 955 956 957 958 959

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
960
}
X
Xin Pan 已提交
961

L
Liu Yiqun 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

998 999 1000 1001 1002
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1003 1004
}

Y
yuyang18 已提交
1005 1006 1007 1008
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1009
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1010 1011 1012
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1013
    auto* original_tensor =
C
chengduo 已提交
1014
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1015
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1016 1017
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1018
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1019 1020 1021 1022
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1023
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1024
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1025 1026
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1027
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

  std::unordered_set<std::string> no_buffer_ins;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = no_buffer_inferer(Inputs(), Outputs(), Attrs());
    }
  }

Y
yuyang18 已提交
1038
  for (auto& var_name_item : Inputs()) {
S
sneaxiy 已提交
1039 1040 1041 1042 1043
    // NOTE(zjl): STL does not guarantee fast std::unordered_set::count when set
    // is empty. At least STL implemented on my mac does calculate hash code
    // of search key even though the set is empty.
    if (!no_buffer_ins.empty() &&
        no_buffer_ins.count(var_name_item.first) > 0) {
G
gongweibao 已提交
1044
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1045
              << " in Operator " << type_;
S
sneaxiy 已提交
1046 1047 1048
      continue;
    }

X
Xin Pan 已提交
1049 1050 1051 1052
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1053
      auto* var = input_vars[i];
X
Xin Pan 已提交
1054

Y
yuyang18 已提交
1055
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1056
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1057 1058 1059
        continue;
      }

C
chengduo 已提交
1060
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1078 1079
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
1093 1094 1095 1096 1097 1098 1099 1100 1101
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1102 1103
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1104
        enable_cache_transfer_scope_ = true;
1105
      }
1106
      if (!new_scope) {
Y
yuyang18 已提交
1107 1108
        new_scope = &scope.NewScope();
      }
1109 1110 1111 1112
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1113
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1114 1115 1116
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
1117
      if (enable_cache_runtime_context_) {
1118 1119
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1120 1121

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1122
      input_vars[i] = trans_var;
1123

Y
yuyang18 已提交
1124
      Tensor out;
Y
yuyang18 已提交
1125
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1126 1127 1128 1129 1130 1131
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  const std::vector<const Variable*> vars = ctx.MultiInputVar(name);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
      }
      if (t != nullptr) {
        PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                          "The Tensor in the %s Op's Input Variable %s(%s) is "
                          "not initialized.",
                          Type(), name, ctx.Inputs(name).at(i));
        proto::VarType::Type tmp = t->type();
        PADDLE_ENFORCE(tmp == *data_type || *data_type == dafault_data_type,
                       "The DataType of %s Op's duplicable Variable %s must be "
                       "consistent. The current variable type is (%s), but the "
                       "previous variable type is (%s).",
                       Type(), name, DataTypeToString(tmp),
                       DataTypeToString(*data_type));
        *data_type = tmp;
      }
    }
  }
}

1168
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1169
    const ExecutionContext& ctx) const {
1170 1171 1172
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1173
  for (auto& input : this->inputs_) {
1174
    ParseInputDataType(ctx, input.first, &data_type);
Y
Yu Yang 已提交
1175
  }
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
  PADDLE_ENFORCE_NE(data_type, dafault_data_type,
                    "DataType should be indicated by input Variable.");
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      "The Input Variable(%s) of %s Op used to determine kernel data type "
      "is empty or not LoDTensor or SelectedRows.",
      name, Type());
1192
  return data_type;
Y
Yu Yang 已提交
1193
}
1194

1195 1196 1197 1198 1199 1200 1201 1202
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1203 1204
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1205 1206
}

Q
Qiao Longfei 已提交
1207
}  // namespace framework
L
liaogang 已提交
1208
}  // namespace paddle